مديرية التربية لولاية مستغانم ثانوية الإخوة عباس - السور-

دُورة : ماي 2018 المدة: 04 سا و 30د وزارة التربية الوطنية امتحان بكالوريا التجريبي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأوَل

التمرين الأول: (04 ن)

 $a \in \mathbb{R}$ ، (a-1) الرقم الرقم a و 5 كرات تحمل الرقم $a \in \mathbb{R}$ ، $a \in \mathbb{R}$ ، $a \in \mathbb{R}$.

نسحب عشوائيا في آن واحد 3 كرات من الصندوق .

1) احسب احتمال الحوادث التالية:

A: سحب 3 كرات تحمل نفس العدد.

B: سحب كرتين بالظبط تحمل نفس العدد.

2) ليكن X المتغير العشوائي المرتبط بمجموع الاعداد المسجلة على الكرات المسحوبة لكل سحب.

أ- حدد القيم التي يأخذها المتغير العشوائي X.

ب- حدد قانون الاحتمال X.

E(x) = 0 أحسب الأمل الرياضياتي بدلالة a و حدد a من أجل

التمرين الثاني: (4.5ن)

 $U_{n+2}=5U_{n+1}-4U_n$: $U_n=0$ متتالية معرفة بـ: $U_0=0$ ، $U_1=1$ ، $U_0=0$ ، متتالية معرفة بـ: $U_n=0$

 $\cdot U_3$ و U_2 -1

 $U_{n+1} = 4U_n + 1$: أ برهن بالتراجع من أجل كل عدد طبيعي n أن +2

ب) تحقق أن : U_n عدد طبيعي ، ثم استنتج أن : U_n و أوليان بينهما.

 $oldsymbol{N}_n = U_n + rac{1}{3}$: ب $\mathbb N$ با متتالية معرفة على متتالية معرفة على متتالية معرفة على $oldsymbol{V}_n$

أ) بين أن المتتالية (V_n) هندسية ، عين أساسها و حدها الأول.

 $\cdot n$ بدلالة U_n بم V_n بدلالة V_n

• $PGCD((4^6-1);(4^5-1))$ -4

 $PGCD((4^{n+1}-1);(4^n-1))$: n عين من أجل كل عدد طبيعي n

ما العدد الطبيعي n بواقي قسمة 4^n على 7 - أ) ادرس حسب قيم العدد الطبيعي n

 $\cdot S_n = V_0 + V_1 + \dots + V_{3n}$: حيث $\cdot S_n = V_0 + V_1 + \dots + V_{3n}$ احسب بدلالة $\cdot S_n = V_0 + V_1 + \dots + V_{3n}$

ج) عين قيم العدد الطبيعي n حيث العدد $9S_n+8n$ يقبل القسمة على 7

التمرين الثالث: (04.5 ن)

• $p(z) = z^3 - 12z^2 + 48z - 72$: حيث Z = Z المتغير المركب P(Z) .I

 $p(z)=(z-6)(z^2+\alpha z+\beta)$: Z کل کل و β و α و β و α عين العددين الحقيقيين α

، p(z)=0 المعادلة \mathbb{C} على في (2)

II. في المستوي المركب منسوب الى معلم متعامد و متجانس $(O;\vec{u};\vec{v})$ نعتبر النقط C;B;A ذات اللواحق $Z_C=\overline{Z_B}$ ، $Z_B=3+i\sqrt{3}$ ، $Z_A=6$

أ) أكتب $Z_{c} \cdot Z_{B} \cdot Z_{A}$ على الشكل الأسي.

 \cdot ABC على الشكل الجبري ثم الشكل الأسي ، استنتج طبيعة المثلث $\frac{Z_A-Z_B}{Z_A-Z_C}$ على الشكل الأسي ، استنتج طبيعة المثلث

.III ليكن \sqrt{S} التشابه المباشر الذي مركزه C و نسبته \sqrt{S} و زاويته .III

أوجد الكتابة المركبة للتشابه المباشر (S).

A' = S(A) بين أن النقط $A' \cdot B \cdot A$ على استقامية علما أن

التمرين الرابع: (07 ن)

 $g(x) = 1 + x^2 + 2\ln(x)$ بالدالة العددية المعرفة على $g(x) = 1 + x^2 + 2\ln(x)$ بالدالة العددية المعرفة على $g(x) = 1 + x^2 + 2\ln(x)$

1) أدرس اتجاه تغير الدالة 9.

 $\cdot \alpha$ على وحيدا g(x)=0 على أن المعادلة g(x)=0 على وحيدا g(x)=0

، $]0;+\infty[$ على g(x) على [3]

 $f(x) = -x + \frac{3 + 2\ln x}{x}$: بالدالة العددية المعرفة على المجال [بالدالة العددية المعرفة على المجال]0;+∞

 $oldsymbol{\cdot} \left(O; \overrightarrow{i}; \overrightarrow{j} \right)$ مشيلها البياني في المستوي المنسوب الى المعلم المتعامد و المتجانس (C_f)

 $\lim_{x \to +\infty} f(x) = \lim_{x \to 0} f(x) = \int_{0}^{\infty} (1-x)^{n} dx$

• $f'(x) = \frac{-g(x)}{x^2}$]0;+∞[من أجل كل عدد حقيقي x من أبين أنه من أجل كل عدد حقيقي x من $f'(x) = \frac{-g(x)}{x^2}$

ب) تحقق أن : $\left(\frac{1}{\alpha} - \alpha\right)$: غين حصرا له.

النتيجة هندسيا. $\lim_{x\to\infty} [f(x)+x]$ أ احسب أ النتيجة النتيجة

 \cdot (۵) النسبة الى مستقيمه المقارب المائل (C_f) ادرس وضعية

ج)بين أن (C_f) يقبل مماسا (T) يوازي (Δ) يطلب كتابة معادلة ديكارتية له.

: شيح x_1 , x_0 انقبل أن (C_f) يقطع حامل محور الفواصل في نقطتين فاصلتيها (4

 $2,11 < x_1 < 2,13$ $0,22 < x_0 < 0,23$

 $\cdot (C_f)$ ، (Δ) ، (T) أنشئ

 $\cdot x=1$ ، x=2 ، y=-x التي معادلتها التي معادلتها (C_f) و المستقيمات التي معادلتها A المحدد بالمنحني (5

انتهى الموضوع الأول

الموضوع الثاني

التمرين الأول: (04 ن)

اختارت مجلة عشرة كتب مختلفة مثنى مثنى و مكونة من 4 كتب في الرواية ، 4 كتب في العلوم و كتابين في التاريخ .

و قررت اعداد لائحة نتضمن ترتيبا لعناوين ثلاث كتب من بين العشرة عن طريق القرعة لسحب ثلاث عناوين واحد تلو الاخر دون ارجاع .

- 1) بين أن عدد اللوائح الممكنة هو 720.
 - 2) احسب احتمال الحادثتين

A : الحصول على لائحة يكون أولها عنوان كتاب التاريخ.

B : الحصول على لائحة نتضمن اي عنوان لكتب التاريخ.

- د) X المتغير العشوائي الذي يربط كل X كل لائحة بعدد عناوين كتب التاريخ X
 - أ) حدد قيم المتغير العشوائي X.
 - $\bullet E(x)$ أعط قانون الاحتمال X ثم أحسب الأمل الرياضياتي \bullet

التمرين الثاني: (04.5 ن)

- ، $2n+27\equiv 0$ [n+1] عدد طبیعي ، عین قیم n حیث: n (أ (1
- $\cdot (b-a)(b+a) = 24$ عين الثنائيات الطبيعية (a;b) التي تحقق (a;b)
- $\beta = \overline{3403}^5$ ، $\alpha = \overline{10141}^5$: يلي : $\beta = \overline{3403}^5$ النظام نو النظام أي النظام العشري . $\alpha = \overline{10141}^5$ اكتب $\alpha = \overline{10141}^5$ اكتب $\alpha = \overline{10141}^5$ الكتب $\alpha = \overline{10141}^5$ الكت
 - $\begin{cases} a^2 b^2 = 24 \\ \alpha \ a \beta \ b = 9 \end{cases}$: التي تحقق (a;b) عين الثنائيات (ب
 - 3) اوجد PGCD(478;671) و PGCD(1434;2013) (3
 - 2013x 1434y = 27 المعادلة \mathbb{Z} على في \mathbb{Z}

التمرين الثالث: (04.5 ن)

نعتبر في المستوي المركب المنسوب الى المعلم المتعامد و المتجانس $\left(O;\vec{u};\vec{v}\right)$ النقط C ، B ، A التي لواحقها

 $Z_C = -4 + i$ ($Z_B = 2 + 3i$ $Z_A = -i$: على التربيب

$$\cdot rac{Z_C - Z_A}{Z_B - Z_A}$$
 أ) اكتب على الشكل الجبري العدد المركب أ \cdot $(1$

ب) عين طويلة و عمدة العدد المركب $\frac{Z_{C}-Z_{A}}{Z_{R}-Z_{A}}$ ثم استنتج طبيعة المثلث \cdot

نعتبر التحويل النقطى (T) في المستوي الذي يرفق بكل نقطة M ذات اللاحقة Z النقطة M ذات M

Z'=iZ-1-i اللاحقة 'Zحيث:

أ) عين طبيعة التحويل T و عناصره المميزة.

ب) ماهي صورة النقطة B بالتحويل T

 $Z_D = -6 + 2i$ لتكن D النقطة ذات اللاحقة (3

أ) بين أن النقط C · B · A على استقامية .

 $\cdot D$ عين نسبة التحاكي h الذي مركزه A و يحول النقطة C الى النقطة D

D الى B و يحول B الذي مركزه A و يحول B الى B

التمرين الرابع: (07 ن)

ال التكن f دالة عددية معرفة على \mathbb{R} بـ \mathbb{R} بـ \mathbf{R} المتعامد و المتعامد و المتعامد و المتعامد و المتعامد و المتعامد المعلم المتعامد و المتعامد

- 1. I حسب النهايات للدالة f عند $\infty+e$ عند $\infty-e$
- f'(x) احسب f'(x) و f'(x) أم استنتج اتجاه تغير الدالة .2
- $-1,3 < \alpha < -1,2$ بين ان المعادلة f'(x) = 0 تقبل حلا وحيدا α
 - 4. استنتج اتجاه تغیر الدالة f و شكل جدول تغیراتها.
- 5. بين أن المستقيم (Δ) الذي معادلته y=x هو مقارب مائل للمنحنى (C) عند $\infty+$ ، ثم أدرس الوضع النسبي بين (C) و (Δ).
 - (C)و المنتقيم (Δ) و المنحنى (Δ).

 $U_{n+1}=f\left(U_{n}
ight)$: n نفرض المتتالية $U_{n}=0$ المعرفة بـ $U_{0}=0$ و من أجل كل عدد طبيعي .II

 $oldsymbol{U}_1$ ، $oldsymbol{U}_1$ ، $oldsymbol{U}_0$ أ- مثل على محور الفواصل أ- مثل على أ

 (U_n) عط تخمينا حول اتجاه تغير و تقارب المتتالية

- $-1 < U_n < 0: n$ برهن أن من أجل كل عدد طبيعي (2
 - بین أن (U_n) متتالیة متناقصة و استنتج تقاربها.
- $\cdot 0 < U_{n+1} + 1 < \frac{3}{4}(U_n + 1)$: n يرهن أن من أجل كل عدد طبيعي (4
 - (U_n) استنتج أن $(U_n) + 1 < \left(\frac{3}{4}\right)^n$ ماهي نهاية (5)

بالتوفيق و النجاح في شهادة الباكالوريا مع دعوات استاذة المادة