

الموضوع الأول

التّمرين الأول :		
01	$\begin{aligned} & \hline 0.25 \\ & 0.50 \\ & 0.25 \\ & \hline \end{aligned}$	
01.25	$\begin{aligned} & 0.25 \\ & 0.50 \end{aligned}$	(2) f) '
	0.50	
0.75	$\begin{aligned} & \hline 0.25 \\ & 0.50 \\ & \hline \end{aligned}$	V=27u.v : DABC حساب حجم رباعي الوجوه
01	$\begin{aligned} & \hline 0.50 \\ & 0.50 \end{aligned}$	$\begin{gathered} : B \hat{D C C}(4 \\ \quad \cos (\overrightarrow{D B}, \overrightarrow{D C})=\frac{\overrightarrow{D B} \bullet \overrightarrow{D C}}{D B \times D C}=\frac{\sqrt{2}}{2} \end{gathered}$: $\text { لدينا } h=3 \text { لد } V=\frac{\frac{1}{2} B D \times D C \times \sin (B D C)}{3}$
الثتمرين الثانّي :		
01	0.25x4	$3^{4 k} \equiv 1[5] ; 3^{4 k+1} \equiv 3[5] ; 3^{4 k+2} \equiv 4[5] ; 3^{4 k+3} \equiv 2[5]$]
0.50	0.50	$1437{ }^{2017} \equiv 2[5] \quad(2$
01	$\begin{gathered} 2 \times 0.25 \\ 0.50 \end{gathered}$	$\begin{gathered} 48^{4 n+3} \equiv 2[5], 2 \times 9^{2 n+1} \equiv 3[5]: \text { : } \mathbf{3} \\ 48^{4 n+3}-2 \times 9^{2 n+1}+1 \equiv 0[5]: \text { : إنن } \end{gathered}$
1.50	$\begin{gathered} 4 \times 0.25 \\ 0.50 \end{gathered}$	 $n=4 \alpha+3, \alpha \in \mathbb{N}$: باتلالي
التالتمرين الثأثأث) 05 نقاط)		
01	4×0.25	. $z_{2}=1-i \sqrt{3}$ ، $z_{1}=1+i \sqrt{3}$ ، $z_{0}=4$ ، $\Delta=-12=12 i^{2}$:
01	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$	$\frac{z_{C}-z_{A}}{z_{B}-z_{A}}=1 \times e^{\bar{z}_{3}^{3}}:$ (1) (II) المئث ABC متغايس الأضلاع

01	0.50	$z_{D}=r\left(z_{B}\right)=-2: \quad D$
	0.50	- ب\% (\%)
02	01	$z_{n}=z_{A}^{n}+z_{B}^{n}=2^{n+1} \cos \left(\frac{n \pi}{3}\right)$) التّبيان (3
	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$	

التمرين الرابع :07 نقاط)

0.50	0.25x2	$\lim _{x \rightarrow+\infty} g(x)=-\frac{1}{2}, \lim _{x \rightarrow 0} g(x)=+\infty$ (1 (I
01	$\begin{aligned} & 2 \times 0.25 \\ & 2 \times 0.25 \end{aligned}$	解 $g^{\prime}(x)=\frac{-5+2 \ln x}{x^{3}}(2$ اتجاه التُنيز و جنول التُتيرات
1.25	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\text { إشارة } g(x) \text { : }$$x$ 0 α $+\infty$ $g(x)$ - $\dot{1}$ +
01	2x0.25	$\lim _{x \rightarrow+\infty} f(x)=-\infty \quad, \quad \lim _{x \rightarrow 0} f(x)=-\infty \quad \text { (} \quad \text { (1) }$
	2×0.25	ب) اتجاه التُغير و جدول التغيزات
01	0.25	$\lim _{x \rightarrow+\infty}\left[f(x)+\frac{1}{2} x-2\right]=\lim _{x \rightarrow+\infty}\left[\frac{\ln x-1}{x}\right]=0$
	$\begin{aligned} & 0.25 \\ & 0.50 \end{aligned}$	ب) وضعية المنحنى (C) بالْنسبة إلى المستّتيم (() . من الجدول : نستّنج : ($\left(C_{f}\right) \cap(\Delta)=\{(e ; f(e))\}$

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبية :تقني رياضي / بكالوريا استنائية : 2017

العلاهة		غناصر الإجابة
مجهوع	هجزأة	

الموضوع الثاني
التمرين الأول : (04نقاط)

التمرين الأول : 04:04)		
01	0.50	1)
	0.50	($\left.\Delta_{2}\right)$, (Δ_{1})
01	01	2) تبيّن أنّ الجملة: تمثّل ومنيطي للمسنوي (P)
01	2×0.50	 I
01	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	
	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	ب) النّحقق أنّ المستّوي (P) يمس (S) .
اللتمرين الثاني :		
01.50	0.75	
	$\begin{aligned} & 0.50 \\ & 0.25 \end{aligned}$: ب) ($u_{n+1}-u_{n} \leq 0: \int u_{n+1}-u_{n}=\frac{(1-a) n+1}{a n} u_{n}:$ لدينا المتتألية (u_{n} متنأقصة تماما و محدودة من الأمغل فهي منقأرية.
01.50	$\begin{aligned} & 0.50 \\ & 0.25 \end{aligned}$	حدَ
	3x0.25	$\lim _{n \rightarrow+\infty} u_{n}=0, u_{n}=a \times n \times v_{n}=\frac{n}{a^{n}}, \quad v_{n}=\frac{1}{a^{2}}\left(\frac{1}{a}\right)^{n-1}=\frac{1}{a^{n+1}}$

01	0.50	$S_{n}=S_{n}=a\left(v_{1}+v_{2}+\cdots+v_{n}\right)=\left(\frac{1-\left(\frac{1}{a}\right)^{n}}{a-1}\right):$ المجمو (3
	0.50	$a=2017 W \lim _{n \rightarrow+\infty} S_{n}=\frac{1}{2016}$
(التمرين الثالث : 05 (05		
01	4×0.25	$S=\{-1+\sqrt{3} ;-1-i \sqrt{3} ;-1+i \sqrt{3}\}$, $\Delta=-12:$ حل (I
01	$\begin{aligned} & 0.25 \\ & 0.50 \\ & 0.25 \end{aligned}$	$\begin{equation*} z_{B}-z_{A}=i\left(z_{C}-z_{A}\right): \text { تبيِن أن } \tag{II} \end{equation*}$ المتّث ABC قائم في A و متساوي الساقين. $S_{A B C}=3 u . a: \text { و مساحته }$
	0.25	$L=\frac{z_{C}-z_{A}}{z_{C}}=\frac{\sqrt{3}+3}{4}+i \frac{3-\sqrt{3}}{4}: L$ (${ }^{\text {i }}$
1.50	$\begin{gathered} 0.50 \\ 3 \times 0.25 \end{gathered}$	$\begin{array}{r} L=\frac{\sqrt{6}}{2}\left(\cos \frac{\pi}{12}+i \sin \frac{\pi}{12}\right): \text { ب) بنبين أن } \\ \tan \frac{\pi}{12}=2-\sqrt{3}, \sin \frac{\pi}{12}=\frac{\sqrt{6}-\sqrt{2}}{4}, \cos \frac{\pi}{12}=\frac{\sqrt{6}+\sqrt{2}}{4}: \tan \frac{\pi}{12} \end{array}$
1.50	$\begin{gathered} 0.50 \\ 3 \times 0.25 \end{gathered}$	$\left(\overrightarrow{B M} ; \overrightarrow{B M^{\prime}}\right)=\frac{\pi}{12}, B M^{\prime}=\frac{\sqrt{6}}{2} B M:$ 3 عاصره المميزة : المركز هو B النسبة هي $\frac{\pi}{12}$ ، $\frac{\sqrt{6}}{\text { هارية له }}$
	0.25	$S_{A^{\prime} B^{\prime} C^{\prime}}=\left(\frac{\sqrt{6}}{2}\right)^{4} S_{A B C}=\frac{27}{4} u . a: A^{\prime} B^{\prime} C^{\prime}$ مساحة المشث
التمرين الرايع : 07 (07 نقاط)		
0.75	$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.25 \end{aligned}$	 $g(x)>0$ ، إشارة
1.25	0.50	$\cdot \lim _{x \rightarrow+\infty} f(x)=+\infty, \lim _{x \rightarrow \infty} f(x)=-\infty$

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشُعبة :تقني رياضي / بكالوريا استثنائثة : 2017

	$\begin{aligned} & 0.25 \\ & 0.50 \end{aligned}$	، $f^{\prime}(x)=g(x)$: اتجاه تخيزر الذالة f)
1.50	$\begin{aligned} & 0.25 \\ & 0.50 \end{aligned}$	$\lim _{x \rightarrow+\infty}[f(x)-x]=1: 1$ نَ $y=x+1:(\Delta)$ (الستِّتأج معادلة
	$\begin{aligned} & 0.50 \\ & 0.25 \end{aligned}$	ب) ($\left(C_{f}\right) \cap(\Delta)=\{I(-1,0)\},$
0.75	$\begin{aligned} & 0.50 \\ & 0.25 \end{aligned}$	3) إثبات أنّ $y=x+3 \quad$ معادلة (T)
1.75	$\begin{aligned} & 0.75 \\ & 0.25 \end{aligned}$ 0.75	(3
01	0.25 0.50 0.25	$\begin{gather*} \mathscr{A}(\alpha)=\int_{-1}^{\alpha}(f(x)-(x+1)) d x \\ \mathscr{A}(\alpha)=\left[-2(x+2) e^{-x}\right]_{-1}^{\alpha}=\left(-2(\alpha+2) e^{-\alpha}+2 e\right) c m^{2} \\ \lim _{\alpha \rightarrow+\infty} \mathscr{A}(\alpha)=2 e \end{gather*}$

