امتحان تجريبي في مادة العلوم الفيزيائية (04)

ثالثة ثانوي - الشعب العلمية و الرياضية

الأستاذ: فرقاني فارس المدة: ساعتان الأقسام: عت، ر، تر

السنة الدراسية: 2017/2016

www.sites.google.com/site/faresfergani

السنة الدراسية : 2017/2016

نرجوا ابلاغنا بأي خلل في المواضع و شكرا مستقا

التمرين الأول: (الحل على الموقع: وحدة 01 - عرض نظري و تمارين 03 - تمرين 01)

لدراسة تطور حركية التحول بين شوارد البيكرومات $\operatorname{Cr_2O_7}^{2-}_{(aq)}$ و محلول حمض الأوكساليك $\operatorname{C}_2H_2O_4_{(aq)}$ نمزج في اللحظة t=0s حجما $V_1=40~{
m mL}$ من محلول بيكرومات البوتاسيوم ($(2\dot{
m K}^+_{(aq)}+{
m Cr_2O_7}^{2-}_{(aq)})$ تركزه المولي . C_2 مع حجم $V_2=60~\mathrm{mL}$ من محلول حمض الأوكساليك تركيزه المولى مُجْهول $V_2=60~\mathrm{mL}$

1- أكتب معادلة التفاعل الكيميائي الحادث ، علما أنه تفاعل أكسدة إرجاعية تشارك فيه الثنائيتان:

 $(CO_2/H_2C_2O_4)$ · $(Cr_2O_7^{2-}/Cr^{3+})$

الشكار-1

2- أحسب الكمية الابتدائية شوارد البيكرومات $\operatorname{Cr_2O_7}^{2-}$ ثم أنشئ تقدم التفاعل المذكور.

3- يمثل (الشكل-1) المنحنى البياني لتطور كمية مادة . بدلالة الزمن Cr³⁺(aq)

3- كيف نصنف هذا التفاعل من حيث مدة استغراقه ؟

-4 عبر عن السرعة الحجمية للتفاعل بدلالة $|Cr^{3+}_{(aq)}|$

5- أوجد من البيان:

أ- التقدم النهائي X_f .

ب- باعتبار التحول تاما عين المتفاعل المحد علما أن 'H

 C_2 أوجد التركيز المولي لمحلول حمض الأوكساليك

. احسب قيمة $t_{1/2}$ من البيان . $n_{1/2}(\mathrm{Cr}^{3+}) = \frac{n_{\mathrm{f}}(\mathrm{Cr}^{3+})}{2}$ يكون : يكون يكون . البيان . يكون البيان .

التمرين الثانى: (الحل على الموقع: وحدة 01 - عرض نظري و تمارين 02 - تمرين 06)

تتأكسد شوار د اليود I^- بواسطة الماء الأكسجيني H_2O_2 في وسط حمضي H_3O^+ وفق التفاعل ذي المعادلة :

$$2~\Gamma_{(aq)} + H_2O_{2~(aq)} + 2H_3O^+_{(aq)} = I_{2~(aq)} + 4H_2O_{(\ell)}$$
: نحقق 3 تجارب في أحجام متساوية حسب شروط كل تجربة كما يوضحه الجدول التالي

3	2	1	رقم التجربة
\mathbf{n}_0	n_0	n_0	$($ mmol $)$ H_2O_2 كمية المادة الابتدائية من
80	80	40	كمية المادة الابتدائية من ʿI (mmol)
بزيادة	بزيادة	بزيادة	${ m H_3O}^+$ كمية المادة الابتدائية من
20°C	40°C	20°C	درجة حرارة الوسط التفاعلي

n_{I2}(mmol)

16
14
12
10
8
6
4
2
4
2
4
(min)

بعد متابعة تطور تشكل كمية مادة ثنائي اليود I_2 في التجارب الثلاث تحصلنا على المنحنيات الثلاثة التالية (C_1)

(c) (b) (a)

1- هل شوارد $^+$ $_3$ O تلعب دور وسيط أم متفاعل في التجارب الثلاث ؟ علل .

 $c \cdot b \cdot a$ انسب رقم التجربة 1 , 2 , 3 لكل منحنى 2 مع التعليل .

3- تتناقص سرعة التفاعل بمرور الزمن ، فسر ذلك على المستوى المجهري .

التمرين الثالث: (الحل المفصل: تمرين مقترح 05 على الموقع)

ينمذج التحول الكيميائي الذي يحدث بين شوارد البيروكسوديكبريتات $(S_2O_8^{2-1})$ وشوارد اليود (I^-) في الوسط المائي بتفاعل تام معادلته :

$$S_2O_8^{2-}$$
 (aq) + $2I^{-}$ (aq) = $2SO_4^{2-}$ (aq) + I_2 (aq)

(t=0) حجما الدراسة تطور هذا التفاعل في درجة حرارة ثابتة ($0=35^{\circ}$ C) بدلالة الزمن ، نمزج في اللحظة (0=100 L الدراسة تطور هذا التفاعل في درجة حرارة ثابتة (0=100 L البوتاسيوم (0=100 L البوت

أ- أنشئ جدو لا لتقدم التفاعل الحاصل .

ب- أكتب عبارة التركيز المولي $\left[S_2O_8^{-2}
ight]$ لشوارد البيروكسوديكبريتات في المزيج خلال التفاعل بدلالة : C_1 ، V_2 ، V_2 ، V_2 ، V_1 التركيز المولي لثنائي اليود (I_2) في المزيج .

جـ/ أحسب قيمة $\left[S_2O_8^{-2}\right]_0$ التركيز المولي الشوارد البيروكسوديكبريتات في اللحظة $\left[S_2O_8^{-2}\right]_0$ لحظة انطلاق التفاعل بين شوارد $\left[S_2O_8^{-2}\right]_0$ و شوارد $\left[I^-\right]$.

II- لمتابعة التركيز المولي لثنائي اليود المتشكل بدلالة الزمن . نأخذ في أزمنة مختلفة t_i ، t_i ، t_i ، t_i اليود المتشكل بدلالة الزمن . نأخذ في أزمنة مختلفة t_i ، t_i عينات من المزيج حجم كل عينة t_i و نبردها مباشرة بالماء البارد و الجليد و بعدها نعاير ثنائي اليود المتشكل خلال المدة t_i بواسطة محلول مائي لثيوكبريتات الصوديوم (t_i t_i) تركيزه المولي خلال المدة t_i و في كل مرة نسجل t_i حجم محلول ثيوكبريتات الصوديوم اللازم لاختفاء ثنائي اليود فتحصل على جدول القياسات التالى :

t(min)	0	5	10	15	20	30	45	60
V'(mL)	0	4,0	_6,7	8,7	10,4	13,1	15,3	16,7
$[I_2](mmol/L)$								

أ- لماذا نبرد العينات مباشرة بعد فصلها عن المزيج .

ب- في تفاعل المعايرة تتدخّل الثنائيتان : $(S_4O_6^{2-}(aq)/S_2O_3^{2-}(aq))$ و $(S_4O_6^{2-}(aq)/S_2O_3^{2-}(aq))$. أكتب المعادلة الإجمالية لتفاعل الأكسدة = إرجاع الحاصل بين الثنائيتين .

ج/ بين مستعيناً بجدول التقدم لتفاعل المعايرة أن التركيز المولي لثنائي اليود في العينة عند التكافؤ يعطى بالعلاقة:

$$\left[I_2\right] = \frac{1}{2} \times \frac{C' \times V'}{V_0}$$

د/ أكمل جدول القياسات.

 $[I_2] = f(t)$ البيان (الم على ورقة مليمترية البيان (الم على الم ع

 $_{\rm c}$ ($t=20~{
m min}$) المرعة المجمية للتفاعل في اللحظة (