
التمرين الثالث عشر

<u>- I</u>

استغلال الوثيقة (1-أ):

- 1 تعرف على البنية الممثلة في الوثيقة (1-أ):
 - ميتوكوندري
 - وصف بنية الميتوكوندرى:
- تبدي الميتوكوندريات بنية مجزأة يحيط بها غلاف مزدوج يتألف من غشاءين بلازميين ، يرسل الداخلي منهما نتوءات تدعى الأعراف الميتوكوندرية.
 - يشغل تجويف الميتوكوندري مادة أساسية.
 - 2 رسم تخطيطي لما فوق بنية الميتوكوندري:

استغلال الوثيقة (1-ب):

1 - تحليل منحى تطور تركيز 02 بدلالة الزمن:

- · قبل ز1 وقبل إضافة الغلوكوز: نلاحظ أن كمية الأكسجين ثايتة (عدم استهلاك الاكسجين).
 - في ز1 وعند إضافة الغلوكوز: تبقى كمية الأكسجين ثابتة بنفس القيمة.
- في ز2 بعد إضافة حمض البيروفيك: نلاحظ تناقص كمية الاكسجين في الوسط (استهلاك الأكسجين) وتصل إلى أدنى قيمة عند الدقيقة 10.

2 - الاستنتاج:

- لا تستعمل الميتوكوندري الغلوكوز مباشرة بل تستعمل أحد نواتج تفككه هو حمض البيروفيك.

3 - الاستنتاج بخصوص التفاعلات التي تتم داخل الميتوكوندري:

- ان التفاعلات التي تطرأ على حمض البيروفيك بوجود الاكسجين داخل الميتوكوندري تشكل التأكسدات التنفسية وهي تفاعلات تتطلب توفر الاكسجين .

اا - 1 - العلاقة بين التركيب البيوكيميائي ، والخصائص البنيوية للميتوكوندري :

- تتميز الميتوكوندري ب:
- بنية مجزأة تتمثل في : أغشية (أعراف الغشاء الداخلي) والحشوة (تجويف التيلاكويد) من جهة .
- وتركيب كيميائي متباين من جهة أخرى حيث يحتوي الغشاء الداخلي للميتوكوندري على عدد من نواقل البروتونات والالكترونات التي تشكل سلسلة الاكسدة ولاإرجاع والأنزيم الـ ATP سنتيتاز (إنزيم مركب للطاقة)، بينما تحتوي الحشوة على تشكيلة من الانزيمات خاصة ناز عات الهيدروجين وناز عات الكربون.

2 - الاستنتاج فيما يخص سيرورة عملية التنفس:

من الاجابة السابقة نستنتج أن لكل من الغشاء الداخلي للميتوكوندري والحشوة وظيفة نوعية في سيرورة عملية التنفس.

3 - كتابة صيغة التفاعل الاجمالي المنتج للـ ATP أنطلاقا من الغلوكوزوالذي يتم عل مستوى الهيولي:

- التحلل السكرى:

$$C_6H_{12}O_6 + 2 \text{ NAD} + 2 \text{ ADP} \rightarrow 2 C_3H_4O_{3+} 2 \text{ ATP} + 2 \text{ NADH,H}^+$$
 غلوكون غلوكون

ااا - 1 - تحديد المستوى الخلوي الذي تتم فيه كل مرحلة من مراحل الوثيقة 3:

- المرحلة 1 (التحلل السكري): الهيولي الأساسية
- المرحلة 2 (خطوة تحضيرية لحلقة كريبس)و 3 ×حلقة كريبس): الحشوة (الماتريس)
 - المرحلة 4 (الفسفرة التأكسدية): الغشاء الداخلي للميتوكوندري

2 – الناقل المتدخل في المرحلة 1 : هو ⁺NAD

 $NAD^{+} + 2H^{+} + 2e^{-}$ $NADH,H^{+}$

- التفاعل الكيميائي:

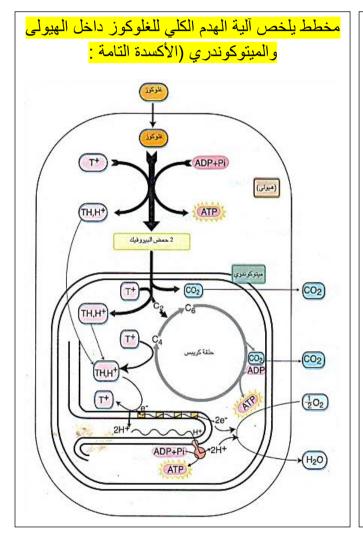
3 - تلخيص كل مرحلة بمعادلة اجمالية:

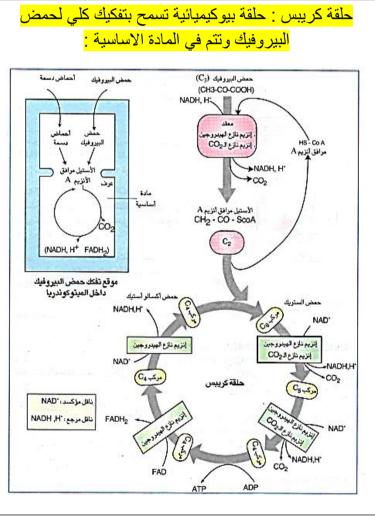
- المرحلة (2): الخطوة التحضيرية لحلقة كريبس

$$CH_3$$
 $-C$ $-COOH+CoA-SH$ CO_2 CH_3 $-C$ $-S-CoA$ NAD^+ $NADH,H^+$

- المرحلة (3) : حلقة كريبس

- المرحلة (4): الفسفرة التأكسدية


10 NADH,H † + 2FADH2 + 6O2 + 34 ADP + 34 Pi 12H₂O + 10 NAD † + 2FAD † + 34 ATP


4 - تحديد دور الاكسجين:

- يعتبر المستقبل النهائي للإلكترونات في السلسلة التنفسية ،حيث يرتبط ثاني الأكسجين المرجع مع البروتونات الموجودة في المادة الأساسية لتشكيل الماء
 - ويتدخل الاكسجين في المرحلة (4): الفسفرة التأكسدية .
 - المعادلة الكيميائية:

$$1/2O_2 + 2e^- + 2H^+ \longrightarrow H_2O$$

ملحق

