إختبار الفصل الثاني في مادة العلوم الفيزيائية

الشعبة: 3 تقني رياضي

$$V=0.52cm^3$$
 : نعطي - حجم الكرة الفو لاذية : $0.52cm^3$

- $r_{A} = 7850 Kg / m^{3}$: الكتلة الحجمية للكرة
- $r_{H}=920 Kg/m^{3}$: الكتلة الحجمية للزيت
 - $g = 9.8m/s^2$: شدة الجاذبية الأرضية

تم تصوير السقوط الشاقولي لكرية من الفولاذ داخل الزيت . وبعد معالجة المعطيات بالإعلام الألي تم الحصول على النتائج المبينة في الجدول.

. t = 20ms الزمن الفاصل بين موضعين متاليين

I - إستغلال نتائج الجدول:

. حدد طبيعة حركة الكرة بين الموضعين M_{15} و M_{21} . ثم إستنتج قانون نيوتن الذي يناسب هذه الحالة مع التعليل .

. M_{6} الدراسة الحركية: 1- أحسب سرعة مركز عطالة الكرة عند الموضع M_{6}

. التعليل (1) مع التعليل M_{18} ، هل هذا الحساب يوافق نتيجة السؤال (1) مع التعليل .

III - الدراسة التحريكية:

1 - مثل كل القوى المطبقة على الكرة خلال حركتها في الزيت داخل المخبار .

- m أحسب كتلة الكرة -2
- 3- أعط عبارة شدة قوة دافعة أرخميدس ثم أحسب قيمتها .

 $\frac{dv}{dt} + \frac{f}{m} = A$: الثاني الثاني الثاني النيوتن بين أن سرعة مركز عطالة الكرة يحقق المعادلة التفاضلية التالية -4

. حيث A ثابت

A . أعط العبارة الحرفية لA ثم أوجد قيمتها ووحدتها A

. $f=k\, v$ إذا كانت شدة قوة إحتكاك الزيت تتناسب طرديا مع سرعة الكرة: أي -6

 $Bv + \frac{dv}{dt} = A$ الشكل المعادلة التفاضلية السابقة تكتب على الشكل المعادلة التفاضلية السابقة السابقة المعادلة التفاضلية السابقة المعادلة المعادلة التفاضلية السابقة المعادلة المعا

ب-عرف السرعة الحدية V_L ثم إستنج قيمتها.

. $^{\mathcal{V}}L$ في المعادلة التفاضلية عندما تؤول السرعة إلى القيمة الحدية $\frac{dv}{dt}$

. - إستنتج عبارة B بدلالة A و V محددا وحدتها و قيمتها .

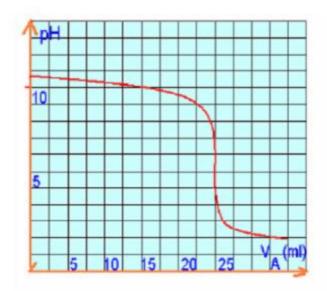
							-	_			
مركز العطالة	t(ms)	Z(mm)	v(m/s)	مركز العطالة	t(ms)	Z(mm)	v(m/s)	مركز العطالة	t(ms)	Z(mm)	v(m/s)
M_0	0	0	0	M_{7}	140	69	0.75	M_{14}	280	193	0.93
M_{1}	20	4.5	0.23	M_{8}	160	83	0.80	M_{15}	300	211	095
M_{2}	40	9	0.34	M_9	180	101	0.88	M_{16}	320	231	0.95
M_3	60	18	0.46	M_{10}	200	118	0.90	M_{17}	340	249	0.95
M_4	80	27.5	0.58	M_{11}	220	137	0.93	M_{18}	360	269	0.95
M_{5}	100	41	0.64	M_{12}	240	155	0.93	M_{19}	380	287	0.95
M_{6}	120	53		M_{13}	260	174	0.95	M_{20}	400	307	0.95
								M_{21}	420	325	0.95

التمرين الثاني (05 نقاط): (معايرة أساس ضعيف بحمض قوي)

نذيب كتلة m من ميثيل أمين جسم صلب أبيض صيغته CH_3NH_2 في الماء المقطر عند درجة الحرارة V=500mL فنحصل على محلول S_B حجمه V=500mL و تركيزه فنحصل على محلول على محلول على محلول على على محلول على محل

نأخذ من المحلول $S_B = 50m$ حجما $V_B = 50m$ و نعايرها بواسطة محلول S_A لحمض كلور الماء تركيزه المولي بشوارد $PH = f(V_A)$ و ذلك بقياس $PH = f(V_A)$

- 1- ماالذي يدل على أن ميثيل أمين أساس ؟
- 2- أكتب المعادلة الكيميائية لتفاعل المعايرة.
- E حدد إحداثيات نقطة التكافؤ E بطريقة المماسين المتو ازبين.
 - . m قيمة التركيز C_B ثم أحسب قيمة -4
- 0- حدد النقم الأعظمي $X_{
 m max}$ لتفاعل المعايرة عند إضافة حجم $V_{
 m A}=10mL$ (إنجاز جدول تقدم التفاعل).
- عبر بدلالة PK_a عن نسبة التركيزين $V_A = 10mL$ عند إضافة حجم عن نسبة التركيزين $V_A = 10mL$ عند إضافة حجم $V_A = 10mL$


. $X_{\scriptscriptstyle F}$ فس النسبة بدلالة $X_{\scriptscriptstyle F}$ ثم إستنتج قيمة

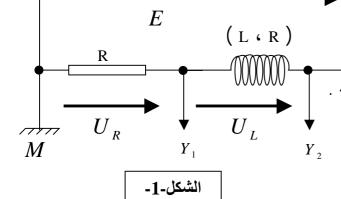
- 7- أحسب ثابت التوازن لتفاعل المعايرة .
- 8- ما هو الكاشف الملون المناسب لهذه المعايرة . برر إجابتك.

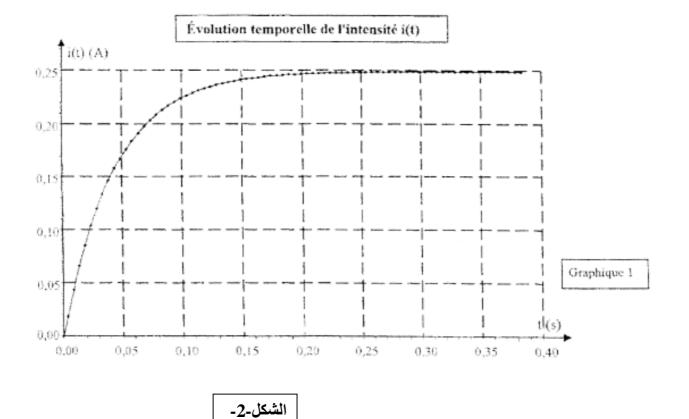
الكاشف	أحمر الميثيل	الهيليانتين	أحمر الكريزول		
مجال تغير اللون في PH	[4.2-6.2]	[3.1-4.4]	[7.2 - 8.8]		

يعظى:

$$PK_a (CH_3NH_3^+/CH_3NH_2) = 10.7$$

 $M_H = 1g / mol_1M_N = 14g / mol_1M_C = 12g / mol_1$


التمرين الثالث (03 نقاط):


ثنائي القطب يتكون من وشيعة ذاتيتها L و مقاومتها الداخلية $r=11.8\Omega$ مربوطة على التسلسل مع ناقل أومي مقاومته $R=12\Omega$ تغذى بمولد ينتج توتر كهربائي ثابت E=6.1V كما في الشكل E=6.1V نصل الدارة بجهاز راسم الإهتزاز المهبطى فنحصل على البيان الشكل E=6.1V عند غلق القاطعة.

- 1 حدد المدة الزمنية للنظام الإنتقالي .
- 2- أكتب المعادلة التفاضلية لشدة التيار الكهربائي.
- 3- أكتب عبارة ثابت الزمن t ثم أحسب قيمته بيانيا.
 - 4- إستنتج عبارة ذاتية الوشيعة ثم أحسب قيمتها .

$$i\left(t\right) = \frac{E}{R+r} \left(1-e^{\frac{-t}{t}}\right)$$
 : بين أن

- هو حل للمعادلة التفاضلية .
- 6- أكتب عبارة شدة التيار في حالة النظام الدائم ثم أحسب قيمته
 - 7- هل هذه القيمة متوافقة مع القيمة التجريبية.
 - . ماذا تستتج ماذا t=5t ماذا تستتج -8

التمرين الرابع (04 نقاط):

نضع في حوجلة عيارية سعتها $V_0 = 100ml$ كتلة $V_0 = 100ml$ ثم نكمل الحجم إلى خط العيار بواسطة الماء المقطر بعد الرج

.
$$C_0 = 10^{-2} \, mol \, / \, l$$
 تركيزه المولي $HCOOH$ الميثانويك الممض الميثانويك المحمض المحمد ال

- 1 أحسب الكتلة m
- 2- أكتب معادلة تفاعل حمض الميثانوك مع الماء.
 - 3- أنجز جدول تقدم التفاعل .
- . $C_{\scriptscriptstyle 0}$ و $\left[H_{\scriptscriptstyle 3}O^{\scriptscriptstyle +}
 ight]_{\scriptscriptstyle F}$ بدلالة بدلالة النهائية النهائية التقدم -4

.
$$Q_{rF} = \frac{\left[H_3O^+\right]_F^2}{C_0 - \left[H_3O^+\right]_F}$$
 و بين ان Q_{rf} عبارة كسر التفاعل عند التوازن Q_{rf}

- 6- أعط عبارة الناقلية النوعية S للمحلول عند حالة التوازن بدلالة الناقلية النوعية المولية I للشوارد المتواجدة فيه و I . I فيه و I .
 - . $25^{\circ}c$ عند الدرجة $s=0.05s.m^{-1}$ عند الدرجة عند الدرجة -7
 - . HCOOH / $HCOO^-$ غين Q_{rF} ثم قارن قيمتها التجريبية مع ثابت الحموضة أحمو K_a للثنائية
- $C_1 = 0.1 mol \ / \ l$ نحقق نفس الدر اسة السابقة و لكن بإستعمال محلول S_1 لحمض الميثانويك تركيزه المولي النتائج التالية:

$$s = 0.17s \, \text{m}^{-1}$$
 , $Q_{rF} = 1.8 \times 10^{-4}$

أ- هل يؤثر التركيز المولى للمحلول على النسبة النهائية للتقدم t_F .

ب-هل يؤثر التركيز المولى للمحلول على Q_{rF} عند التوازن.

المعطيات:

$$K_a (HCOOH / HCOO^{-}) = 1.8 \times 10^{-4}$$

M(HCOOH) = 46g/mol, $I_{H_3O^+} = 35ms.m^2.mol^{-1}$, $I_{HCOO^-} = 5.46ms.m^2.mol^{-1}$


التمرين الخامس (03 نقاط) :

نعتبر قمرا اصطناعيا للاتصالات كتلته m يوجد مداره الدائري في مستوى خط الاستواء الذي يعتبر مدارا للأقمار الاصطناعية الساكنة بالنسبة للأرض ، تدرس حركة هذا القمر الاصطناعي في المرجع المركزي الأرضي.

- 1- أعط تعريف المرجع المركزي الأرضى .
- Z = 35800 km على ارتفاع على الاصطناعي على ال
 - . أحسب rلمسار حركته t
- V^{-2} عط مميزات شعاع السرعة المدارية $ec{V}$ لمركز عطا لته .
- r,V عبارته بدلاله $\stackrel{
 ightarrow}{a}$ و أعط عبارته بدلاله r,V .
- 3 نعتبر المرجع المركزي الأرضي غاليليا يخضع القمر الاصطناعي في هذا المرجع إلى قوة وحيدة و هي قوة التجاذب التي تطبقها الأرض . نعتبر أن كتلة الأرض M_{T} .
 - . م أحسب قيمته . $G imes M_T$ و الجداء r و الجداء عبارة التسارع a عبارة التسارع a بدلالة a
 - 2-3- أعط عبارة السرعة المدارية v ثم أحسب قيمتها.
 - x = 3 3 عبارة الدور x = 3 للقمر الاصطناعي حول الأرض ثم أحسب قيمته .
 - 3-4- استنتج عبارة القانون الثالث لكيبلر.
- 4- تتم عملية الإستقمار بواسطة صاروخ يقوم بحمل القمر الاصطناعي ووضعه في مدار انتظاري يكون شكل هذا $Z_p = 200 km$ المدار إهليليجي يمثل مركز الأرض إحدى محرقيه حيث الارتفاع ألأصغري للقمر الاصطناعي هو $Z_p = 200 km$ في النقطة p و ارتفاعه ألأعظمي p في النقطة p كما في الشكل .
 - 4-1- في أي نقطة من المدار تكون سرعة القمر الاصطناعي أصغرية.
 - المداري T_{A} للقمر الاصطناعي . أحسب قيمته T_{A}

المعطيات:

$$G = 6.67 \times 10^{-11} S.I$$

 $M_T = 5.98 \times 10^{24} Kg$
 $R_T = 6400 Km$

