ثانوية سعد دحلب القبة المستوى: السنة الثالثة علوم تجريبية

التاريخ: 2010/03/18 التوقيت :من 8سا إلى 11سا

الاختبار الثانى في مادة العلوم الفيزيائية

التمرين الأول:

يتحلل المحلول المائى للماء الأكسجيني إلى غاز ثنائي الأكسجين وماء ، تعطى لك المعادلة المنمذجة للتحول الكيميائي الحادث

$$2H_2O_{2(aq)} = O_{2(g)} + 2H_2O_{(l)}$$

نريد در اسة حركية هذا التفاعل والذي نعتبره تاما ، وذلك عند الدرجة \sim 25. ولأن تفكك الماء الأكسجيني Fe^{3+} بطيء جدا ، نستخدم وسيط و هو عبارة عن شوار د الحديد III أي

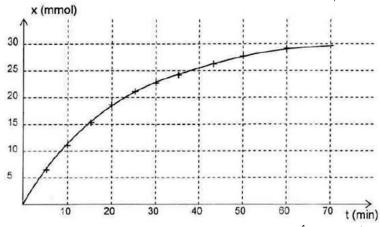
عند اللحظة t=0 عند اللحظة

. C=2.5mol/L من المحلول المائي للماء الأكسجيني تركيزه المولى بالمادة المذابة V=24ml

. ($Fe^{3+}_{(aq)} + 3Cl^{-}_{(aq)}$) المائي لكلور الحديد المحلول المائي لكلور الحديد 6mL

الماء المقطر إلى غاية الحصول على محلول حجمه $V_T=1L$.

. $P = 1,013x \, 10^5 Pa$ يسمح التجهيز المستخدم بتجميع الغاز المنطلق و قياس حجمه عند الضغط الجوي نفرض أن الحجم الكلى للمحلول $V_{_T}=1$ يبقى ثابتا خلال التجربة ونفرض أن الغاز المنطلق مثاليا . النتائج المتحصل عليها مدونة في الجدول التالي:


t (min)	0	5	10	15	20	25	30	35	40	60
$V_{O_2}(mL)$	0	160	270	360	440	500	540	590	610	680

I- تقدم التفاعل

- 1- أنشىء جدول التقدم
- . أحسب قيمة التقدم الأعظمي x_{max} للتفاعل .
- 3- أوجد عبارة التقدم x(t) للتفاعل بدلالة حجم ثنائي الأكسجين $V_{\alpha}(t)$ الناتج
 - R = 8.314 . $t = 30 \, \text{min}$ عند -4

II- تحليل البيان

البيان التالي يعطى تغيرات التقدم x بدلالة الزمن t .

- 1- عرف زمن نصف التفاعل $t_{1/2}$ وأوجد قيمته بيانيا .
- 2- ماهي المعلومة التي يعطيها البيان والتي تخص تطور سرعة التفاعل خلال الزمن ؟ برر إجابتك .

III- العوامل الحركية

- 1- مِا هو العامل الحركي الذي يسمح بشرح تطور سرعة التفاعل خلال الزمن ؟ فسر هذا التطور مجهريا .
 - 2- أرسم على البيان المعطى شكل البيان لو تمت التجربة في درجة حرارة أعلى علل .
- 3- أجبُ مع التعليل ، بصحيح أو خطأ ، في حالة ما إذا أكملنا المزيج الإبتدائي بالماء المقطر حتى الحصول على محلول حجمه $V_T'=0.5L$.

الإقتراح الأول: التقدم النهائي يقسم على 2.

الإقتراح الثاني: يصلُ التفاعلُ إلى الحالة النهائية في مدة أقصر.

التمرين الثاني:

دراسة النشاط الإشعاعي للفصفور

الفصفور \overline{p}_{15} مشع ، يتفكك بإنبعاث إلكترون ، نصف عمر الفصفور المنع ، يتفكك بإنبعاث الكترون ، نصف

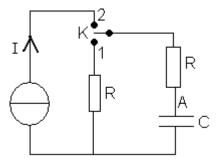
 $_{S}$ اكتب معادلة التفكك . $_{S}$ المريت معادلة التفكك .

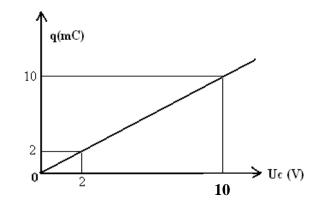
. $N_0 = 10^{22} noyaux$ عند اللّحظة و على على المخبر عينة من الفصفور تحتوي على عانت لدينا في المخبر

 λ قانون التناقص الإشعاعي $N=N_0e^{-\lambda t}$ يعطي عدد أنوية الفصفور المتبقية عند كل لحظة زمنية حيث هو مقدار ثابت موجب .

- . $\frac{dN}{dt} + \lambda N = 0$ هو حل المعادلة التفاضلية $N = N_0 e^{-\lambda t}$ هو حد الأنوية -2
 - . $t1/2 = \frac{\ln 2}{\lambda}$ عرف نصف العمر $t_{1/2}$ ثم أوجد العلاقة -3
 - . $jour^{-1} \hookrightarrow \lambda \hookrightarrow$
 - 4- أعط عبارة InN بدلالة الزمن .
 - $_{1}$ الجدول التالي يعطي لك تغير ات $_{10}$ المن الزمن .

t(jours)	0	5	10	15	20	25	30	35	40	45
$\ln N$	50.66	50.41	50.16	49.91	49.69	49.43	49.25	48.94	48.73	48.48


- أرسم البيان $f(t)=\ln N$ ثم تحقق من قيمة χ المحسوبة في السؤال 3


التمرين الثالث:

لدر اسة شحن وتفريغ مكثفة عبر ناقل أومي 2R=2R نحقق التركيب التجريبي التالي .

I- شحن المكثفة

يسري المولد في الدارة تيارا شدته I=0,33mA ، البيان التالي يعطي تغيرات شحنة المكثفة q بدلالة التوتر بين طرفيها .

c أوجد من البيان قيمة سعة المكثفة c

. 20% بدقة c=1mF بدقة طرف الصانع هي c=1mF بدقة c=1mF

- هل القيمة المتحصل عليها تتوافق مع ما أعطاه الصانع ؟

7,5s وهذا عندما نشحنها بتيار شدته 7,5s وهذا عندما نشحنها بتيار شدته I'=0,165mA و I'=0,330mA

II- تفريغ المكثفة

عندما يصل التوتر بين طرفي المكثقة إلى القيمة $u=u_0=6,4V$ ، نغير وضع البادلة من 2 إلى 1 نأخذ هذه اللحظة كمبدأ جديد للأزمنة .

1- أحسب الطاقة المخزنة في المكثفة خلال الشحن.

2- أوجد المعادلة التفاضلية التالية.

$$\frac{du_c}{dt} + \frac{1}{2RC}u_c = 0$$

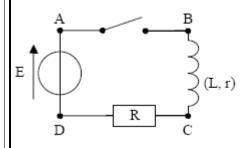
3- إعتمادا على ما درسته ، أعط حل لهذه المعادلة .

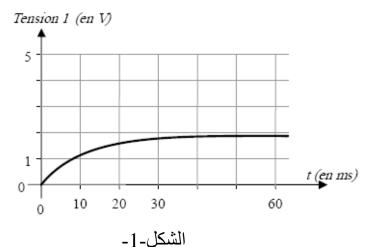
t= au ما قيمة التوتر بين طرفي المكثفة عند 4-

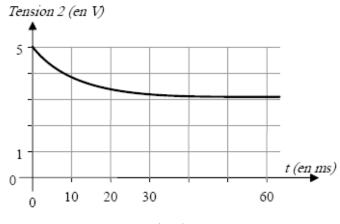
5- نريد تفريغ المكثفة بسرعة ، أيجب علينا إستخدام ناقل مقاومته كبيرة أو صغيرة ؟

التمرين الرابع:

لدينا وشيعة حقيقية مقاومتها الداخلية r و معامل تحريضها الذاتي L لغرض معرفة قيمة كل من r و L ، نحقق الدارة الجانبية حيث


. E=5V و $R=10\Omega$

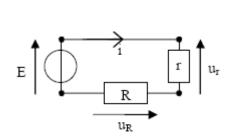

بواسطة برنامج خاص تحصلنا على:


 $u_{R}(t)$ البيان الممثل لتغير ات التوتربين طرفي الناقل بتغير الزمن

و البيان الممثل لتغير ات التوتر بين طرفي الوشيعة بتغير الزمن $u_{b}(t)$.

اللحظة t=0 توافق لحظة غلق الدارة .

الشكل-2-

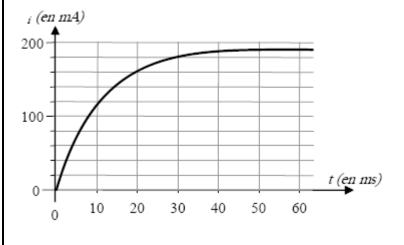

I- تمهید

1- كيف تتصرف الوشبعة عندما تثبت المقادير الفيزيائية ؟

2- لنعتبر الدارة الجانبية.

R و R ، E أ- عبر عن R بدلالة

R ب r ، E بدلالة r ، e و r ، و


II- تحديد قيمة المقاومة الداخلية للوشيعة

- $u_{\scriptscriptstyle b}(t)$ و البيان الموافق للتوتر البيان الموافق التوتر $u_{\scriptscriptstyle R}(t)$?
- ي و $u_{\scriptscriptstyle R}$ ، و $u_{\scriptscriptstyle R}$ ، و البيانين يتوافقان مع هذه العلاقة ? ماهي العلاقة بين
 - u_r أ- ماهي القيمة الحدية u_r
 - ب- إعتمادا على التمهيد ، إستنتج قيمة r

III- تحديد قيمة التحريض الذاتي للوشيعة

i(t) البيان $u_R(t)$ نرسم البيان البيان البيان البيان البيان .

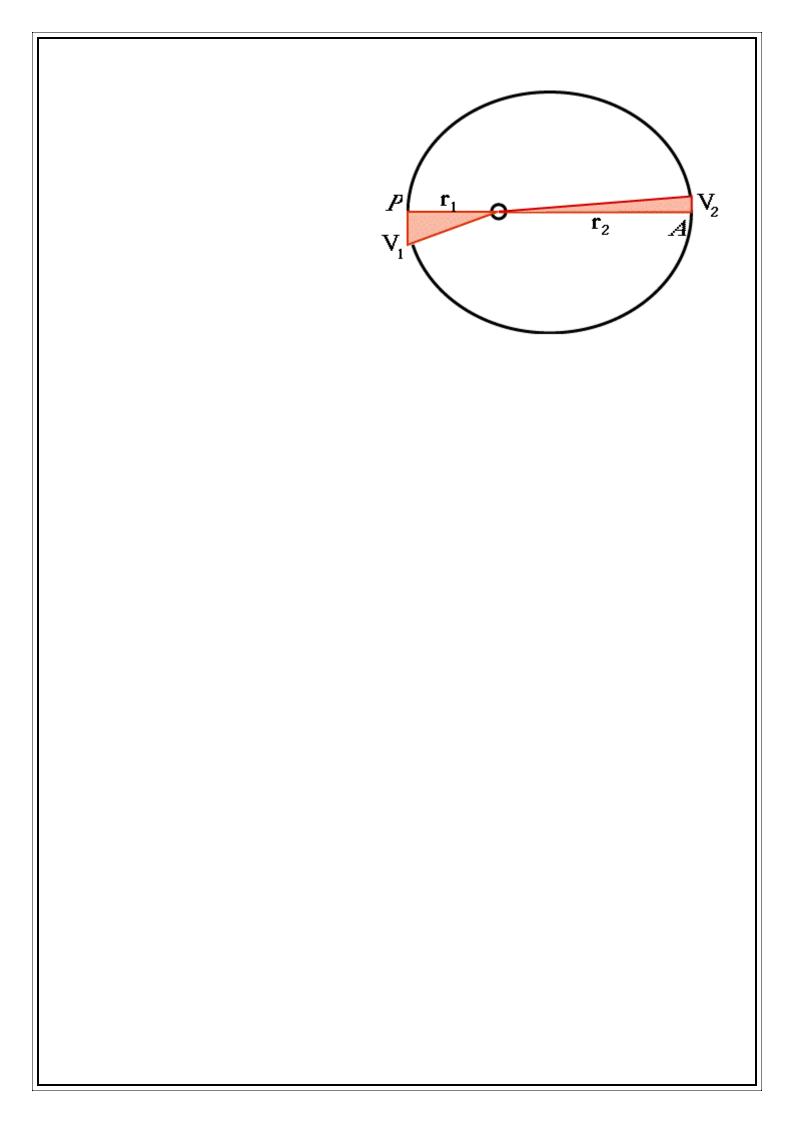
- i(t) القيمة الحدية لi(t) ؟
- $_{\tau}$ أوجد بيانيا قيمة ثابت الزمن $_{\tau}$ للدارة
 - τ أعط العبارة النظرية ل τ
 - L إستنتج قيمة L

التمرين الخامس:

I- التحول الكيميائي المدروس

حمض الإيثانويك CH_3CO_2H والمسمى أيضا حمض الخل ، يتفاعل جزئيا مع الماء حسب المعادلة :

 $CH_3CO_2H_{(aq)} + H_2O_{(l)} = CH_3CO_2^{-}_{(aq)} + H_3O^{+}_{(aq)}$


- 1- أعط تعريف الحمض حسب برونشتد.
- 2- أكتب الثنائيتين أساس/حمض الداخلتين في التفاعل .
- K عبر عن ثابت التوازن K المرفق لمعادلة التوازن الكيميائي K
 - II- الدر اسة عن طريق قياس الناقلية

نقيس عند $25^{\circ}C$ ناقلية محلول حمض الإيثانويك الذي تركيزه $C=10^{-1}mol\ /L$ وحجمه V=100mL فيشير جهاز قياس الناقلية إلى القيمة $\sigma=5x\,10^{-2}S\ /m$.

- n أحسب كمية مادة حمض الإيثانويك الإبتدائية n
 - 2- أنشيء جدول تقدم التفاعل
 - عبر عن التقدم الأعظمي ثم أحسبه .
- 3- بإهمال أي تفاعل كيميائي آخر، ماهي الأفراد الكيميائية المسؤولة عن ناقلية المحلول ؟
- 4- أعط العبارة الحرفية للناقَّلية م للمحلُّول بدلالة التراكيز النهائية لشوارد الهيدرونيوم وشوارد الإيثانوات.
 - 5- أعط العبارة الحرفية التي تسمح بالحصول على التراكيز المولية النهائية للشوارد بدلالة σ ، $\lambda_{_{H_3O^+}}$ و
 - . ثم أحسب التركيز المولي النهائي لكل شاردة $\lambda_{CH;CO^{2-}}$
 - 6- أعط عبارة التقدم النهائي للتفاعل x_f ثم أحسبه .
 - 7- أعط العبارة الحرفية لنسبة التقدم النهائي au_{t} ثم أحسبه . هل التحول المدروس تام ؟ علل إجابتك .
 - 8- أحسب قيمة ثابت التوازن $_{K}$ هل هذه النتيجة موافقة مع جوابك السابق $^{\circ}$

 $\lambda_{H_3O^+} = 35.9mS.m^2 / mol, \lambda_{CH_3CO_2^-} = 4.1mS.m^2 / mol$

إنتهى

