ثانوية الكريمية: 2009 / 2008 | الأقسام: 3 ع ت المدة: 3 ساعات الخريمية: 4 المدة: 3 ساعات الأول في مادة العلوم الفيزيائية

التمرين الأول: (5 نقاط)

. O_2/H_2O_2 يمثل المؤكسـد للثنائية H_2O_2/H_2O ، ويمثل المرجع للثنائية H_2O_2 . من الماء الأكسـيجيني ، هو تأثير H_2O_2 في ذاته . لدينا حجم V=1 من الماء الأكسـيجيني تركيزه $C=10^{-2}$.

- . أكتب المعادلتين النصفيتين لأكسدة و إرجاع H_2O_2 ، ثم أكتب المعادلة الإجمالية $oldsymbol{1}$
 - : نقيس الحجم V_{gaz} لغاز ثنائي الأكسيجين الناتج ، فتحصلنا على النتائج التالية $oldsymbol{\mathcal{L}}$

t (min)	0	5	10	15	20	25	35	55	60	70	80	100
$V_{gaz}(mL)$	0	16,0	28,8	39,5	49,0	57,2	72,0	92,4	96,0	101,5	106,0	111
n (O ₂) (mol)												

. $V_m = 24 \; L.mot^1$: وعندها الحجم المولي هو $T = 20 \; ^{\circ}C$ ، درجة الحرارة ثابتة

- أ. أكمل الجدول ، حيث $n\left(O_{2}
 ight)$ كمية مادة ثنائي الأكسيجين الناتج
- . (ضع النتائج في جدولا x (t) منه قيم x (t) منه قيم بدولا لتقدم التفاعل ، ثم استنتج منه قيم x
 - $oldsymbol{x}$. $oldsymbol{t}$ بدلالة الزمن $oldsymbol{x}$

. $1 \text{ cm} \rightarrow 10 \text{ min}$; $1 \text{ cm} \rightarrow 10^{-3} \text{ mol}$: السلم

- . أوجد بيانيا سرعة التفاعل في اللحظة t=0 و $t=35\,min$. قارن بين السرعتين
 - **4.** أكمل الجدول التــالي : .

t (min)	0	5	10	15	20	25	35	55	60	70	80	100
$[H_2O_2]_{(t)} (mol.L^{-1})$												

جيث $\left[H_{2} o_{2}
ight]_{(t)}$ تركيز الماء الأوكسيجيني . ماذا تستنتج

التمرين الثانى: (5 نقاط)

نريد دراسة حركية التفاعل البطيئ بين شوارد اليود I^- وشوارد بيروكسوديكبريتات $S_2 O_8^{\,2-}$ معادلة $S_2 O_8^{\,2-}$ التفاعل هي : (1) التفاعل هي :

لدراسة حركية التفاعل (1) ، نحدد كمية ثنائي اليود I_2 المتشكل في اللحظة t ،وذلك بمعايرته بواسطة شوارد ثيوكبريتات $S_2 O_3^{2-}$ ، حسب المعادلة التالية :

$$I_{2(aq)} + 2S_2O_{3(aq)}^{2-} \rightarrow S_4O_{6(aq)}^{2-} + 2I_{(aq)}^{-}$$
(2)

 $(K_{(aq)}^+ + I_{(aq)}^-)$ في اللحظة t = 0 نمزج حجم $V_I = 40,0~mL$ من محلول مائي ليود البوتاسيوم

تركيزه $C_1 = 5,0 \cdot 10^{-1} \, mol \cdot L^{-1}$ من محلول مائي لبيروكسوديكبريتات البوتاسيوم ، $C_1 = 5,0 \cdot 10^{-1} \, mol \cdot L^{-1}$ من المزيج التفاعلي ونضيف إليه تركيزه $C_2 = 1,0 \cdot 10^{-1} \, mol \cdot L^{-1}$ من المزيج النشا (يعطي لون أزرق غامق مع ثنائي اليود) بعد تمديده بحجم $V' = 30,0 \, mL$ من صمغ النشا (يعطي لون أزرق غامق مع ثنائي اليود) بعد تمديده بحجم

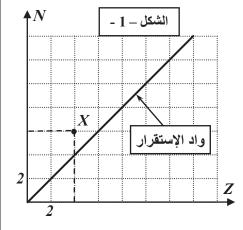
الماء المقطر ، نعاير ثنائي اليود بواسطة محلول ثيوكبريتات الصوديوم ($2Na^{+}_{(aq)}+S_{2}O^{2-}_{3(aq)}$)، تركيزه

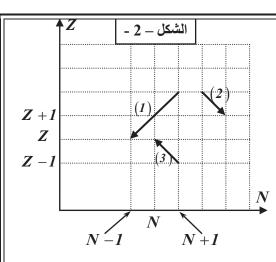
: فتحصلنا على الجدول التالي . $C_3 = 5,0$. $10^{-3} \ mol$. L^{-1}

t (min)	5	10	15	20	25	30	35	40
$V_{eq}(mL)$	8,0	12,0	14,0	15,2	15,6	16,0	16,0	16,0

- 1. أرسم التركيب التجريبي المستعمل لعملية المعايرة ، مع وضع البيانات عليه . كيف نعرف بأننا وصلنا إلى نقطة التكافؤ ؟
 - 2. لنعتبر مايلي:
 - . كمية ثنائي اليود (بالمول) في العينة المُعايَرة : n_{I_2} –
- حجمه يبقى : n'_{I_2} كمية ثنائي اليود (بالمول) في المزيج التفاعلي الكلي ، والذي نعتبر أن حجمه يبقى ثابتا خلال التجربة .
 - . V_{eq} و $n_{I_{,}}$ و انجز جدول تقدم المعايرة ثم أوجد منه العلاقة بين
 - $.n'_{I_2} = \frac{V_I + V_2}{2V}.C_3V_{eq}$: ن أن أن أن التجريبية ، التجريبية
- ج) أنجز جدول تقدم التفاعل (1) و استنتج منه العلاقة بين n'_{I_2} و التقدم x لهذا التفاعل ، ثم أكمل الحدول التالي :

t (min)	5	10	15	20	25	30	35	40
V _{eq} (mL)	8,0	12,0	14,0	15,2	15,6	16,0	16,0	16,0
x (mol)								


- . 1cm
 ightarrow 2min ; $1cm
 ightarrow 10^{-4}mol$: السلم المنحنى البياني للتقدم x بدلالة الزمن x
 - $t = 8 \ min$ ، السرعة الحجمية للتفاعل في اللحظة ، $mol.\ L^{-1}.\ S^{-1}$.


التمرين الثالث: (5 نقاط)

(N-Z مخطط سقري (مخطط -1- يمثل مخطط

- 1. ماذا نقصد بواد الإستقرار؟
- من بين العناصر المبينة في الجدول التالي ماهو العنصر النظير X المبين في المخطط X

الإسم	الهيليوم <i>He</i>	الليثيوم <i>ر</i> <i>Li</i>	البيريليوم <i>Be</i>	البور <i>B</i>	الكربون <i>C</i>
\boldsymbol{Z}	2	3	4	5	6

N(t)

 10^{-3}

- ^{4}X هل النواة ^{4}X مستقرة ؟ علل ؟
- 4. إذا كانت النواة ${}^A_Z X$ غير مستقرة ، أكتب معادلة التفكك مبينا نوع النشاط الذي يحدث لها ؟
- أحسب في هذه الحالة الطاقة المحررة عن تفكك النواة θ 1 . ثم أحسب الطاقة المحررة عن تفكك θ 1 . ثم أحسب الطاقة المحررة عن تفكك . z^4X
- 6. بين مع التعليل أنواع النشاطات الإشعاعية الممثلة بأسهم في الشكل -2- .

M(Be)=10,0113u ; m(B)=10,0102u ; $N_A=6,023 \times 10^{23} \ mol^{-1}$; m(C)=12,0000u : يعطى

التمرين الرابع: (5 نقاط)

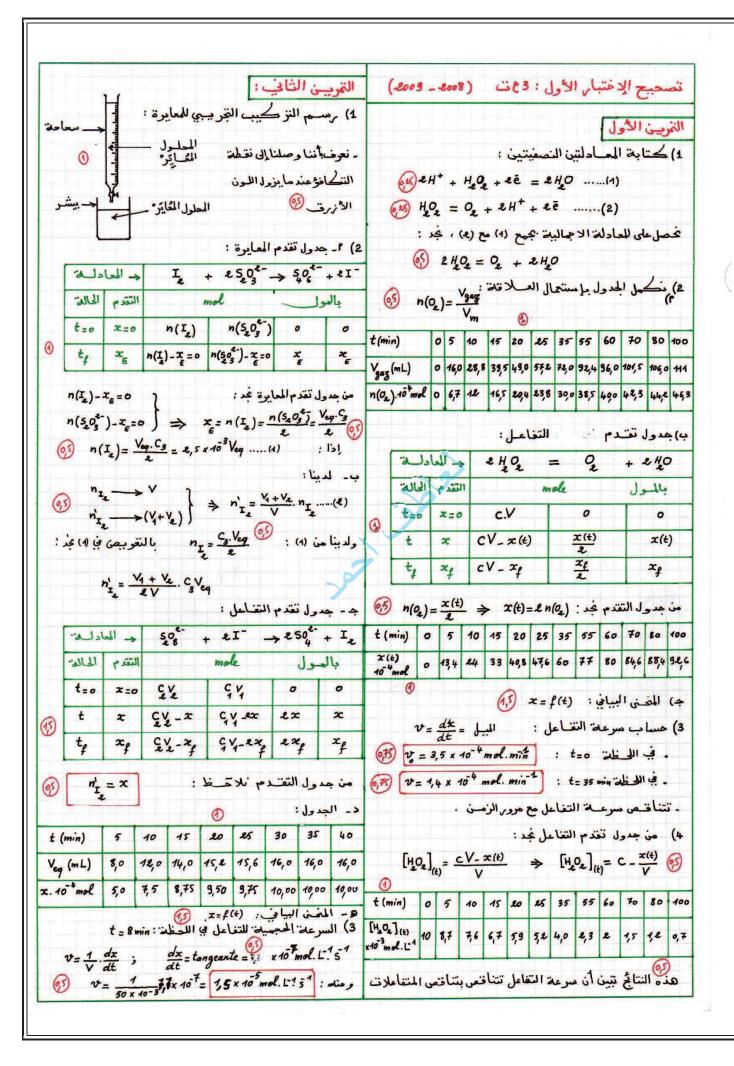
نقذف عينة من نظير الكلور المستقر $\frac{35}{17}Cl$. بواسطة نوترونات لتتحول إلى نواة مشعة

ضمن قائمة الأنوية المدونة في الجدول أدناه:

النواة	³⁸ Cl	³⁹ Cl	³¹ ₁₄ Si	$^{18}_{g}F$	$^{13}_{7}N$
$t_{rac{1}{2}}(s)$ زمن نصف العمر	2240	3300	9430	6740	594

سمحت متابعة النشاط الإشعاعي لعينة من $rac{N(t)}{N_{ heta}}$ =f(t) الموضح سمحت متابعة النشاط الإشعاعي لعينة من $rac{A}{Z}$ برسم

الشكل -1-


في الشكل -1- حيث:

. $t=0~\mathrm{s}$ عدد الأنوية المشعة الموجودة في العينة في اللحظة N_0-

عدد الأنوية المشعة الموجودة في العينة في N(t) - 1

- . $t_{1/2}$ عرف زمن نصف العمر أ1
- . بيانيا $_{z}^{A}X$ عين قيمة زمن نصف العمر للنواة
- يابت التفكك ($t_{1/2}$) أوجد العبارة الحرفية التي تربط ($t_{1/2}$) بثابت التفكك λ
 - $_{f \cdot}$, $_z^A X$ للنواة $_{f \lambda}$ للنواة التفكك الميا
 - الاعتماد على النتائج المتحصل عليها والقائمة الموجودة في الجدول عين النواة $\frac{1}{2}X$
- لك. أكتب معادلة التفاعل المنمذج لتحول النواة $^{35}_{17}Cl$ إلى النواة $^{A}_{17}X$ النواة $^{A}_{17}X$ النواة $^{A}_{17}X$
 - **5.** أحسب بالالكترون فولط و بالميغا إلكترون فولط:
 - . $_{z}^{A}X$ طاقة الربط للنواة $\stackrel{\cdot}{\vdash}$
 - -ب) طاقة الربط لكل نوية .

$$m_p=1,00728~u~;~m_n=1,00866~u~;~m~(~)=37,96011~u~;~1~u=931,5~MeV~_z^4X~:$$
يعطى : $1~eV=1,6\times 10^{-19}J$

التمرين الرابع

- 1) سُمي بواد الاستقرار ، لأنه يحتوي على الأنوية المستقرة (1) ١- نرمن نصف العسر يا هو الزمن اللازم لتفكك نصف عدد الأنوبة الابتدائي.
- 2) هسب الشكل-1- ، الرقم الذري لـ X هو 4= ع ومناه الله من المضى البياف ع ع بوافق 0,5 = 30 مسب الشكل-1- ، الرقم الذري لـ X
- : بغ t=tع لجأ نه
- - $\lambda = \frac{he}{2200} = 3,15 \times 10^4 5^{-1}$: \dot{x} (1) is
 - 1 3,15 x 10-4 5-1
 - ٤) بإستال الجدول والنتائج المخصل عليها نجد:

AX = 38 CL (5)

4) معادلة التفاعل المنمذج لفنول الم عند الى 35 هي :

- 35 Cl + 3 1n -> 38 Cl
 - 5) مطاقة الربط للنواة 1zCl :
- (A | E | = | [Zmp + (A-Z)mn] m(AX) | . C
 - | Ee | = | [47x 1,00 728 + (38-17) x 1,00 866] 37,96011 | x 931,5

|E, = 0,34551 x 931,5 = 322 MeV

- (5) EL = 322 MeV ; Ep = 322 × 10 eV (5)
 - به طاقة الربط لكل ذوبة !
 - $E_A = \frac{E_Q}{A} = \frac{322}{38} = 8,5 \text{ MeV}.$

EA = 8,5 MeV ; EA = 8,5 x 10 6 eV

المرين الثالث

- (عد شه بند)
- فالعنـصر هو البيريلبـوم Be. 🧭
- ومنه نجد ؛ $t_1 \approx 2,2 \times 10^{+3}$ عنبر مستقرة ، لأنها لاتفع في واد الإستقرام $\frac{63}{2}$ 4) ـ محدث تفكك للنواة X عيث تنزاح قطريًا نحو واد الإستقرار 2) ٢- لدينامن قانون التفكك : ٨٤ = ٨٤ (٤) ال أي ٨ بنقصد 1 و ع بوداد بد 1.
 - معادلة النقاك: ؛ عام في النقاك: عام النقاك: عام النقاك: النقاك: ؛ عام النقاك: النقاك: النقاك: النقاك: النقاك: ا
 - 5)- مساب الطاقة المحررة عن تفلك نواة واحدة من Be. - النقس في الكتابة ؛
 - / النواة X للنواة \ المار 10,0102 10,0102 م. تعبين قيمــه \ النواة X النواة كم x .
 - 63) IAMI = 0,0011 2 E = 931,5 x 0,0011 = 1,02 MeV
 - (3) E= 1,02 MeV ;
 - . الطاقة المحرمة عن تفكك و 91 من Be ..
 - E'= m. N.E
 - E' = 0,1 x 6,023 x 10 x 1,02 = 1,5 x 10 MeV
 - (0,5) E'= 2,46 x 10 J
 - 6) نوع الأنشطة الإشعاعية :
 - ـ النشاط الدشعاعي (١) عبارة عن تفكك به ، لأن ج
 - بنقص به و ٧ ينقص كذلك به (أي نواة He ع) .
 - _ النشاط الد شماعي (ع) عبارة عن تفكك + B ، لأن ع ينقنص
 - ب 1 و يزداد ٨ بـ 1. (تحول برونون إلى نوترون).
 - @ النشاط الإنساعي (e) عبارة عن تفكك و لأن ع یزداد به و بتناف می ۸ به ۱ .