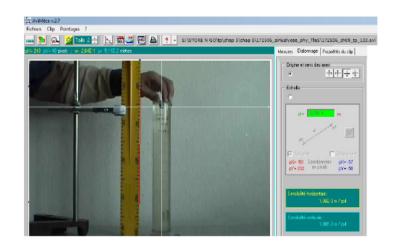
بطاقة التلميذ ع م 17

السقوط الشاقولي لجسم صلب في مائع (سائل أو غاز)



الوسائل المستعملة:

- كرية ، أنبوب طويل مدرج به محلول سكري ، ميقاتية.
 - أشرطة فيديو مصورة لحركات أجسام تسقط شاقوليا.
 - برنامج avimeca و Re gressi
 - الحاسوب و جهاز Datashow

I- السقوط الشاقولي لجسم صلب في مائع بوجود قوى احتكاك.

- يجب أن تكون الكرية مغمورة كليا داخل السائل لحظة تركها .
- افتح برنامج avimeca و عالج مثلا الملف (chute eau sucrée) الذي يوجد به شريط فيديو لحركة m=25g في محلول سكري كثافته d=1,33
- (O) في خانة (Etalonnage \rightarrow Origine et sens des axes) و ضع مبدأه و ضع مبدأه على مركز عطالة الجسم.
- ضع السلم المناسب للصورة في خانة (Etalonnage → Echelle) الذي يمثل طولا من المسطرة . بعد ذلك سجل مختلف المواضيع المتتالية التي يشغلها مركز عطالة الكرية بالنقر على يسار الفأرة.
 - أنقل النتائج المحصل عليها من برنامج Excel ثم أحنف قيم الفاصلة (X) و أحسب قيم السرعة اللحظية (v) ببرنامج Excel .
 - أنسخ الجدول المحصل عليه من برنامج Excel ثم ألصقه في صفحة من برنامج Regressi

t(s)	0	0,04	0,08	0,12	0,16	0,20	0,24	0,28	0,32
y(m)×10 ⁻²	0	0,54	1,73	3,36	5,20	7,15	8,99	11,20	13,20
v(m/s)		0,22	0,34	0,43	0,47	0,47	0,51	0,53	0,50
t(s)	0,36	0,40	0,44	0,48	0,52	0,56	0,60	0,64	0,68
y(m)×10 ⁻²	17,30	17,30	19,40	21,40	23,50	25,40	27,50	29,60	31,60
$\nu(m/s)$	0,51	0,52	0,51	0,51	0,50	0,50	0,52	0,51	

$$\theta = 0,04$$
s : حيث $\nu(t) = \frac{y(t+\theta) - y(t-\theta)}{2\theta}$ حيث العلاقة t بالعلاقة الكرة في كل لحظة t بالعلاقة تحليل النتائج:

u = f(t) المنحنى البياني الممثل لتغيرات سرعة الكرة بدلالة الزمن u = -1

2- حدّد مراحل حركة الكرة.

3- ما هي القوى المؤثرة على الكرة أثناء حركتها ؟ مثلها على رسم.

4- بإعتبار قوة الإحتكاك من الشكل $\vec{f}=-k.\vec{\nu}$ حيث k مقدار ثابت.

 $\frac{\mathrm{d} \nu}{\mathrm{dt}} + \mathrm{B} \mathrm{v} = A$: الشكل على الشكل و نبطبيق القانون الثاني لنيوتن أوجد المعادلة التفاضلية للسرعة و ضعها على الشكل $\mathrm{d} \nu$

 $u = v_{\rm L} (1 - {
m e}^{-t/\tau})$: وأكد من أن حل هذه المعادلة التفاضلية هو

6- ينمذج المنحنى $\nu = f(t)$ في برنامج Regressi و فق دالة أسية متزايدة.

أ- حدد ترتيبة نقطة تقاطع المستقيم المقارب الأفقي للمنحنى مع محور التراتيب، ماذا تمثل هذه الترتيبة ؟ au حدد بيانيا قيمة au.

 $u(au)=0,63.
u_{
m L}$ أي $u_{
m L}$ أي $u_{
m L}$ أي $u_{
m L}$ أي $u_{
m L}$ أحسب قيمة التسارع الابتدائي $u_{
m L}$ ثم إستنتج شدة دافعة أرخميدس $u_{
m L}$.

7- إستنتج نصف قطر الكرة 1.

8- أحسب قيمة **k**.

Π السقوط الشاقولي لجسم صلب في الهواء بإهمال قوى الاحتكاك (السقوط الحر)

- افتح ببرنامج avimeca الملف (chute libre) الذي يوجد به شريط فيديو لحركة سقوط كرة سلة في الهواء (نهمل مقاومة الهواء و دافعة أرخميدس أمام ثقل الكرة).
- (O, \vec{i}, \vec{j}) و ضع مبدأه (Etalonnage \rightarrow Origine et sens des axes) و ضع مبدأه اختر معلما و (O, \vec{i}, \vec{j}) و ضع مبدأه على مركز عطالة الكرة.
 - ضع السلم المناسب للصورة في خانة (Etalonnage → Echelle) الذي يمثل طول المسطرة . بعد ذلك سجل مختلف المواضيع المتتالية التي يشغلها مركز عطالة الجسم بالنقر على يسار الفأرة.
 - أنقل النتائج المحصل عليها من برنامج avimeca إلى برنامج Excel ثم أحنف قيم الفاصلة (x) و أحسب قيم السرعة اللحظية (V) ببرنامج Excel .
 - أنسخ الجدول المحصل عليه من برنامج Excel ثم ألصقه في صفحة من برنامج Regressi:

t(s)	0	0,067	0,133	0,200	0,267	0,333	0,400
y(m)×10 ⁻²	0	4,85	10,70	22,30	37,90	56,30	82,50
v(m/s)		0,80	1,31	2,04	2,56	3,35	4,04
t(s)	0,467	0,533	0,600	0,667	0,733	0,800	0,867
$y(m) \times 10^{-2}$	110,00	140,00	179,00	221,00	268,00	318,00	375,00
v(m/s)	0,53	5,18	6,09	6,69	7,29	8,05	

$$heta=0,067$$
s : حيث $v(t)=rac{y(t+ heta)-y(t- heta)}{2 heta}$: خطى بالعلاقة تعطى بالعلاقة تعلى بالعلى بالعلاقة تعلى بالعلاقة تعلى بالعلاقة تعلى بالعلاقة تعلى بالعلى بالعلاقة تعلى بالعلاقة تعلى بالعلاقة تعلى بالعلى بالعلى

تحليل النتائج:

u = f(t) الزمن البياني الممثل لتغيرات سرعة الكرة بدلالة الزمن u = -1

- ماهي طبيعة حركة الكرة ؟

a=f(t) ، ناقش البيان. a=f(t) ، مثل المنحنى البياني الممثل لتغيرات تسارع الحركة بدلالة الزمن

. البياني الممثل التغيرات الفاصلة بدلالة الزمن y = f(t) ، ناقش البيان.

4- أ- ما هو المرجع المستعمل لدراسة حركة الكرة ؟ هل يمكن اعتباره مرجعا غاليليا؟ علل.

ب- مثل القوى المؤثرة على الكرة.

5- بتطبيق القانون الثاني لنيوتن أدرس حركة مركز عطالة الكرة و استنتج قيمة تسارع الجاذبية الأرضية في مكان التجربة.