بطاقة التلميذ ع م2

① تطور كميات المتفاعلات والنواتج خلال تحول كيميائي

 $m H_2O_{2(aq)}$ في وسط حمضي بواسطة الماء الأكسجيني أكسدة شوارد اليود $m I_{(aq)}$ في وسط حمضي بواسطة الماء الأكسجيني

أثناء مزج محلولي الماء الأكسجيني H_2O_2 (aq) و يود البوتاسيوم $(K^+ + I^-)_{(aq)}$ يحدث تحول كيميائي بطيء (التفاعل $(M^+ + I^-)_{(aq)}$).

 $m H_2O_{2(aq)}$ / $m H_2O_{(\ell)}$ و $m I_{2(aq)}$ / $m I^-_{(aq)}$ الثنائيتان مرجع/مؤكسد الداخلتان في التفاعل هما:

- -1 أكتب معادلة التفاعل المنمذجة لهذا التحول.
 - 2- كيف يتغير لون المحلول ؟

Ⅱ- المبدأ:

لتعيين كمية مادة ثنائي اليود الناتج في الوسط التفاعلي عند لحظة زمنية (t) نستعمل المعايرة اللونية. من أجل هذا نستعمل محلول ثيوكبريتات الصوديوم $(2Na^+ + S_2O_3^{2-})_{(aq)}$ عديم اللون تركيزه المولي $(2Na^+ + S_2O_3^{2-})_{(aq)}$ معلوم .

- $I_{2(aq)} \, / \, I_{(aq)}^- \,$ المعادلة المنمذجة لتفاعل المعايرة (التفاعل 2) علما أن الثنائيتان مرجع/مؤكسد هما: $S_4 O_{6(aq)}^{2-} \, / \, S_2 O_{3(aq)}^{2-}$ و $S_4 O_{6(aq)}^{2-} \, / \, S_2 O_{3(aq)}^{2-}$
 - 2- أنشئ جدول التقدم لتفاعل المعايرة (التفاعل 2).
 - 3 أكتب عبارة التقدم الأعظمي عند التكافؤ.
 - الحجم المضاف عند التكافؤ). $V_{\scriptscriptstyle E}$ و $V_{\scriptscriptstyle E}$ الحجم المضاف عند التكافؤ).
 - 5- عندما نأخذ عينة من الوسط التفاعلي (التفاعل ١٠) لمعايرتها هل التفاعل بين الماء الأكسجيني
 - و شوارد اليود $I_{(aq)}^{-}$ يتوقف أم يتواصل ؟ اشرح ذلك. $H_{2}O_{2}$
 - صتمر؟ اليود معايرة نوع كيميائي ثنائي اليود $I_{2(aq)}$ في هذه التجرية وهو في حالة تطور مستمر؟ -6

III- البروتوكول التجريبي:

أ – المحاليل:

	محلول الماء الأكسجيني (S_1)	محلول يود البوتاسيوم (\mathbb{S}_2)	محلول حمض الكبريت		
	$\mathrm{H_{2}O_{2(aq)}}$	$(K^++I^-)_{aq}$	المركز (2H ⁺ +SO ₄ ²⁻)		
V(mL)	V ₁ =50	V ₂ =50	1		
C(mol/L) التركيز	$C_1 = 0.056$	$C_2 = 0.2$	3		

ب- الوسائل:

- قارورة عيارية سعتها 50mL - قمع.

- مال.- حامل.

- سحاحة 25mL .

- ماصة : عيارية مدرجة سعتها: 1mL ، 5mL . - ميقاتية .

– اجاصة مص .

ج - التجربة:

1- أذكر خطوات العمل في التجربة ⊕.

2- في رأيك هل لون الوسط التفاعلي يتطور بنفس الطريقة في الأنابيب العشرة ؟

3- أذكر البروتوكول التجريبي للمعايرة.

 $S_2 {
m O}_{3~{
m (aq)}}^{2-}$ ، $\Gamma_{{
m (aq)}}^{-2}$ كل عينة. -4

% المستعمل ($2H^{+} + SO_{4}^{2-}$) المستعمل -5

6- أنشئ جدول تقدم التفاعل الخاص بالتحول الكيميائي الذي يحدث بين ثنائي اليود والماء الأكسجيني.

7 - لخص نتائج قياسات المعايرة في الجدول التالي:

t(s)	0	60	160	270	360	510	720	900	1080	1440	1800
V _{éq} (mL)											

8- أحسب عند اللحظة t = 360 كمية مادة كل نوع من الانواع الكيميائية المتواجدة في العينة و لخصها في جدول.

9- أ / أكمل الجدول:

t(s)						
$n_{(I_2)}(mmo\ell)$						
$n_{(H_2O_2)}$ (mmo						
$n_{(I^-)}(mmo\ell)$						

 ${\bf n}({\bf I}^{\hbox{-}})={\bf f}_{{}_3}({\bf t})$ ، ${\bf n}({\bf H}_{{}_2}{\bf O}_{{}_2})={\bf f}_{{}_2}({\bf t})$ ، ${\bf n}({\bf I}_{{}_2})={\bf f}_{{}_1}({\bf t})$: - ب/ مثل البيانات