الفرض الثانسي في مسادة الريساضيسات

الموضوع الاول:

التمرين الاول: 3 نقاط

 $(o;\vec{I};\vec{J};\vec{K})$ الفضاء منسوب الى معلم متعامد ومتجانسس

A(2;2;3) والنقطة 2x+y-z+3=0 : والنقطة P_{y}

2* احسب المسافة بين A و P

1* حدد احداثيات المسقط H للنقطة A على المستوي P

التمرين الثاني: 4 نقاط

$$z^2 - 2(3+2i)z + 1 + 12i = 0$$

 $|Z_1| < |Z_2|$

 $(o;\vec{I};\vec{J})$ المستوي منسوب الى معلىم متعامد ومتجانسس

2-i; 1+4i; Z_2 ; Z_1 نقط من المستوي لواحقه واحقه الترتيب D; C; B; A النقط B الن

 $U_{n}=\left\| \overrightarrow{\omega u}_{n} \right\|$ ، $U_{n+1}=S(U_{n}):n$ النقطة التي لاحقتها 3i نضع من اجل كل عدد طبيعي U_{0}

 (U_n) احسب $\|\overrightarrow{\omega u_n}\|_{p}$ بدلالة $\|x_n\|_{p}$ بدلالة $\|x_n\|_{p}$ احسب $\|x_n\|_{p}$ احساب $\|x_n\|_{p}$

 $\lim_{n \to +\infty} U_n *$

التمرين الثالث: 6 نقاط

g(0);g(-2) احسب *1 $g(x)=x^2+2x+\ln|x+1|$: احسب g(0);g(-2) المعرفة كما يلى

2* ادرس تغيرات الدالة g مستنتجا اشارتها

$$(C_{\mathrm{f}})$$
 انشىء $f(x) = x + 1 - \frac{\ln |x+1|}{x+1}$: $(x) = x + 1 - \frac{\ln |x+1|}{x+1}$ انشىء $(x) = x + 1 - \frac{\ln |x+1|}{x+1}$

التمرين الرابع: 4 نقاط

يحتوي كيس على 20 قريصة سوداء ، 15 منها مرقمة وعلى 30 قريصة بيضاء ،20 منها مرقمة 1* لخص هذه المعطيات في جدول 2* نسحب عشوائيا قريصة من الكيس

أ* علما ان هذه القريصة سوداء ماهو الاحتمال ان تكون مرقمة

ب* علما ان هذه القريصة مرقمة ماهو الاحتمال ان تكون سوداء

التمرين الخامس: 3 نقاط

لتكن (u_n) المتتالية المعرفة على \mathbb{N} كما يلى:

$$\begin{cases} u_0 = 2 \\ u_{n+1} = 2u_n + 1 \end{cases}$$

اً) نضع α عين α المتتالية هندسية. n عبر عندئذ عن v_n ثم عبد عندئذ

.
$$\sum_{p=0}^{p=1} {v \choose p} = \sum_{p=0}^{p=1} {u \choose p} : v$$
 (ب)

الموضوع الثانى: التمرين الاول: 3نقاط

 $A\left(1;-1;2\right);B\left(-1;1;-2\right)$ تعطى $\left(o\;;\vec{I}\;;\vec{K}\;\right)$ الفضياء منسوب السي معلم متعاميد ومتجانيس

1* اكتب تمثيل وسيطيا للمستوي P

Pو Q مستويان من الفضاء حيث :P يشمل النقطة Aو عمودي على المستقيم (AB)

x-y+2z+6=0: 2 de l'habit QC i l'habit x-y+2z+6=0

ا* اوجد المعادلة الديكارتية للمستوى P ب تحقق ان المستوى Q يشمل النقطة B ويوازي P 2* اكتب معادل___ فسطح الكرة (S) التي مركز ها B ونصف قطر ها 4

التمرين الثاني: 4 نقاط

المستوي المركب منسوب الى معلم متعامد ومتجانس $(o;\vec{I};\vec{J})$ ليكن التحويل النقطي S حيث

و عناصره الممين $z'=(1-\sqrt{3}i)z+5\sqrt{3}$ عين طبيعة التحويل $z'=(1-\sqrt{3}i)z+5\sqrt{3}$

 $s^n = s \circ s \circ \dots \circ s; n \geq 2$ نعتب ر التحويال s^n حيات s^n

1* ماهي طبيعة التحويل ثم عين العناصر المميزة له

التي من اجلها تحاكيا n التي من اجلها تحاكيا u النقطة التي لاحقتها u_0 *3

 $U_{n}=\left\|\overrightarrow{ou}_{n}\right\|$ ، $U_{n+1}=S(U_{n}):n$ نضع من اجل کل عدد طبیعی

 $_{\mathrm{n}}$ مرکــز التشابـه $_{\mathrm{n}}$ احسب $\|\overline{\omega u}_{n}\|$ بدلااـــة

* بين ان المتتالية (U_n) هندسية يطلب تعيين حدها الأول واساسه *

التمرين الثالث: 6نقاط

g ادرس تغيرات الدالة g المعرفة كما يلي : $g(x) = \frac{x+1}{2x+1} - \ln x$ ادرس تغيرات الدالة

 $0;+\infty$ قبل حل وحيد α على المجال g(x)=0: المجال g(x)=0

 $0,2 \prec f(\alpha) \prec 0,24$ انشىء (C_f) انشىء $f(x) = \frac{2 \ln x}{x^2 + x}$ المعرفة كما يلي: **

التمرين الرابع: 4نقاط

صندوق يحتوي على ستة كرات مرقمة من 1 الى 6 نسحب من الصندوق كرتان في ان واحد ليكن المتغير العشوائي X الذي يرفق بمجموع رقمي الكرتين المسحوبتين 1* احسب الامل الرياضي للمتغير X 2 احسب التبآيين والانحراف المعياري

التمرين الخامس: 3 نقاط

 $v_n = u_n + \alpha$ و $u_{n+1} = \frac{1}{2}u_n - 3$ و $u_0 = 9$ و $u_n = 0$ و u_n

عين α حتى تكون المتتالية (v_n) متتالية هندسية.

 S_n' و S_n' و S_n' عين نهايـــــة كــل من $S_n = \sum_{i=0}^n v_i$ عين نهايـــة كــل من $S_n = \sum_{i=0}^n v_i$ احسب المجموع .2

الشعبة: 3عت

الولاية: قالمة