الموضوع الثاثي

التمرين الأول: (9ن)

$$f(x) = (x-1)(2-e^{-x})$$
 دالة معرفة على المجال $[0;+\infty[$ كما يلى : $f(x) = (x-1)(2-e^{-x})$

2cm: الوحدة المستوي المنسوب إلى معلم متعامد و متجانس ($o; \overline{i}; \overline{j}$) الوحدة (C)

$$+\infty$$
 عند f عند f عند f عند f عند f عند f

$$(C)$$
 بين أن المستقيم Δ ذو المعادلة $y=2x-2$ خط مقارب مائل لـ

$$\Delta g(C)$$
 ادر س الوضعية النسبية لـ

$$f'(x) = xe^{-x} + 2(1 - e^{-x})$$
 : ثم بین أن $f'(x)$ مم بین أن و أ

$$x \in [0; +\infty[$$
 : من أجل كل $f'(x)>0$ ب- إستنتج أن

f ثم ضع جدول تغیرات الدالة f'(0)

 $\Delta \mathfrak{g}(C)$ أرسم أو Δ أرسم أو Δ

$$\Delta$$
 يوازي A عند A عند A عند A عند A عند A عند A

 Δ المسافة بين A و المستقيم بين Cm

التمرين الثاني: (8ن)

$$C(-1;1;1)$$
 ، $B(1;1;4)$ ، $A(1;0;2)$ الفضاء منسوب إلى معلم متعامد ومتجانس $O(\vec{i};\vec{j};\vec{k})$ ، نعتبر النقط

النقط
$$A$$
 ، B ، A ليست على إسقامة واحدة C ، B ، A

وجب النظام :
$$\{A(1);B(2);C(t)\}$$
 عدد حقيقي موجب G النظام : G

$$t$$
 موجود من أجل كل عدد حقيقي موجب أ- بين أن G

$$\{A(1);B(2)\}$$
ب-أوجد إحداثيات النقطة I مرجح النظام

$$I\vec{C}$$
 جـ عبر عن الشعاع $I\vec{G}$ بدلالة الشعاع

$$C$$
 المجال G المعتقيمة النقط G المجال المجال G المجال المعتقيمة المستقيمة المستقيمة النقطة المستقيمة النقطة المستقيمة G

$$G$$
 ينطبق على G ؛ G ينطبق على الموجب G هـ من أجل أية قيمة للعدد الحقيقي الموجب G الموجب G بناطبق على

$$(D)$$
 عيث أن المستويات (P') و (P') يتقاطعان وفق مستقيم (D) يطلب إيجاد تمثيلا وسيطيا لـ (D) حيث (D)

$$(p')$$
: $x-2y+6z=0$ (p) : $2x+y+2z+1=0$

التمرين الثالث: (3ن)

$$f(x) = \frac{3}{1+2e^{-\frac{x}{4}}}$$
: دالة معرفة على $f(x) = \frac{3e^{\frac{x}{4}}}{2+e^{\frac{x}{4}}}$ عما يلي: $f(x) = \frac{3}{1+2e^{-\frac{x}{4}}}$

ون
$$g(x) = (20x + 10)e^{-\frac{x}{2}}$$
 : ب $[0;+\infty]$ حلا للمعادلة التفاضلية $g(x) = (20x + 10)e^{-\frac{x}{2}}$

$$\begin{cases} y' + \frac{1}{2}y = 20e^{-\frac{x}{2}} \\ y(0) = 10 \end{cases}$$

$$\mathfrak R$$
 حيث n قابلة للإشتقاق على $h(x)=Ce^{-rac{3}{2}y}$ حيث $h(x)=0$ على $h(x)=0$ حيث $h(x)=0$