الأقسام :3همد-3تر-3ع المدة :3^{سا}

اختبار الفصل الأول في مادة الرياضيات.

المؤسسة: ثانوية أحمد البيروني. السنة الدر اسية: 2012-2011

التمرين الأول:

 $p(x) = x^2 + 2x - 3$: حيث P(x) عين جذور كثير الحدود (1 ثم استنتج تحليلا له .

. x و $e^x - 1$ من أجل كل عدد حقيقي $e^x + 3$ ادر س إشارة كل من $e^x - 1$

. $e^{2x} + 2e^x - 3 < 0$: المتراجحة = 0 التمرين الثاني = 0

$$f(x) = \frac{1 - \cos x}{\sin x}$$
: $x \in]-\pi, 0[\cup]0, \pi[$ الدالة المعرفة كما يلي: $f(0) = 0$

1)بين أن f مستمرة عند القيمة f

2) بين أن f تقبل الاشتقاق عند القيمة 0 التمرين الثالث :

الرسم المرافق يمثل (C) التمثيل البياني لدالة f معرفة على \Box في معلم متعامد ومتجانس (C) .

I) في هذا الجزء استخدم البيان المعطى للإجابة على الأسئلة التالية:

. f عين حلول المعادلة : f'(x) = 0 في المجال f'(x) = 0 ،حيث الدالة المشتقة للدالة f'(x) = 0

. \square على على المجال [-2;4] . شكل جدول تغير الدالة f على على (2

. [-2;4] في المجال المعادلة : f(x) = 0

: ب \Box المعطى هو التمثيل البياني للدالة f المعرفة على (C) المعطى المعطى

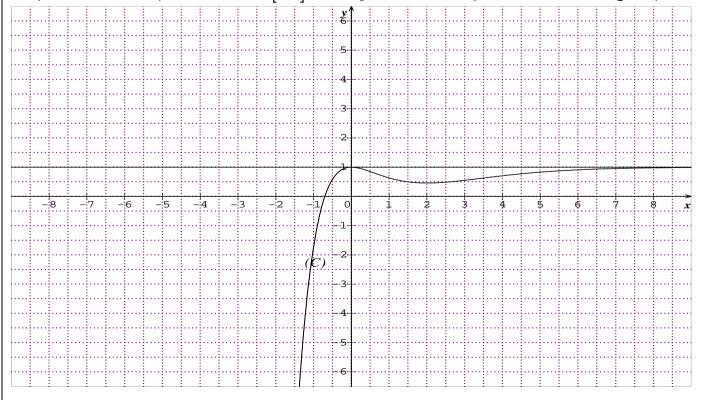
 $f(x) = 1 - x^2 e^{-x}$

. y=1 مستقیما مقاربا معادلته $+\infty$ عند (C) اثبت أن (1

h(x) = f(x) - x2)نضع:

أ) شكل جدول تغيرات الدالة h على المجال [0;2].

ب)استنتج أن المعادلة : f(x) = x تقبل حلا وحيدا في المجال [0;2] نرمز له ب α . (لا يطلب حساب α



التمرين الرابع:

المستوي منسوب الى معلم متعامد ومتجانس $(O; \vec{i}; \vec{j})$. (I

دالة معرفة على \Box بالشكل $f(x)=ax+b+e^{-x}$ دالة معرفة على الناباني . $f(x)=ax+b+e^{-x}$ دالة معرفة على الناباني .

عين العددين a و a علما أن (C_f) يقبل في النقطة O مماسا هو حامل محور الفواصل.

$$f(x) = x - 1 + \frac{1}{e^x}$$
 : نضع (II

f ادرس نهایات الدالهٔ f

2) ادر س اتجاه تغير الدالة f. شكل جدول التغيرات.

. ها قبين أن المنحنى (C_f) يقبل مستقيما مقاربا مائلا (Δ) عند عند عين معادلة له (3

 $y=rac{1}{2}x+1$ عين إحداثي النقطة A من A من المماس عين إحداثي المستقيم الذي معادلته A عين إحداثي النقطة A من A من A عين إحداثي النقطة A من A عين النقطة A من A من A من A عين النقطة A من A من

. (C_f) و (d)

التمرين الخامس:

المستوي منسوب إلى معلم متعامد ومتجانس $(O; \vec{i}; \vec{j})$.

 $g(x)=1-(x^2+1)\sqrt{x^2+1}$: يلي المعرفة على المعرفة المعرفة على المعرفة المعرفة المعرفة على المعرفة على المعرفة ا

1) ادرس نهایات الدالة g

2) ادرس اتجاه تغیر الدالة g. شكل جدول التغیرات.

. g(x) = 0: المعادلة \Box

 $1-(x^2+1)\sqrt{x^2+1} \le 0$: x عدد حقیقی عدد کل عدد الله من أجل کل عدد عدد عقیقی (4

الكن الدالة العددية f المعرفة على الدالة العددية المعرفة على الدالة العددية العددية المعرفة على الدالة العددية العددية المعرفة على الدالة العددية العددية

. و البياني
$$f(x) = -x + 1 + \frac{x}{\sqrt{x^2 + 1}}$$

 $f'(x) = \frac{g(x)}{(x^2+1)\sqrt{x^2+1}}$: اثبت أنه من أجل كل عدد حقيقي x لدينا (1

دول تغیرات الداله f الداله f الداله f الداله f الداله الداله f

9) برهن أنه من أجل كل عدد حقيقي f(x)+f(-x)=2: x ماذا تستنتج

4)اكتب معادلة المماس (D) للمنحنى (C) عند النقطة ذات الفاصلة (4

. $1 < \beta < 2$ حيث β اتقبل حلا وحيدا β حيث f(x) = 0: أبين أن المعادلة

 $\oint \lim_{x\to +\infty} [f(x)+x-2]$ ماذا تستنتج (6

ا ماذا تستنتج $\lim_{x \to -\infty} [f(x) + x]$ احسب

7)انشىئ (C) .

(8) القش حسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة ذات المجهول $(-x+1)\sqrt{x^2+1} = m\sqrt{x^2+1} - x$

تصحيح اختبار الفصل الأول.

$$(0.25)$$
 $p(x) = (x-1)(x+3)$ $p(x)$ (0.5) هما 1 و3- $p(x)$ هما 1 و5- $p(x)$

$$(0.75)$$
 $x > 0$ ($e^x + 3 > 0$) و $(e^x + 3 > 0)$ ($(e^x + 3 > 0)$) ($(e^x + 3 > 0)$ ($(e^x + 3 > 0)$) $(e^x + 3 > 0)$ ($(e^x + 3 > 0)$ ($(e^x + 3 > 0)$) $(e^x + 3 > 0)$ ($(e^x + 3 > 0)$) $(e^x + 3 > 0)$ ($(e^x + 3 > 0)$) $(e^x + 3 > 0)$ ($(e^x + 3 > 0)$) $(e^x + 3 > 0)$ ($(e^x + 3 > 0)$) $(e^x + 3 > 0)$ ($(e^x + 3 > 0)$) $(e^x + 3 > 0)$ ($(e^x + 3 > 0)$ ($(e^x + 3 > 0)$ ($(e^x + 3 > 0)$) $(e^x + 3 > 0)$ ($(e^x + 3 > 0)$ ($(e^x + 3 > 0)$ ($(e^x + 3 > 0)$) $(e^x + 3 > 0)$ ($(e^x + 3 > 0)$ ($(e^x + 3 > 0)$ ($(e^x + 3 > 0)$) $(e^x + 3 > 0)$

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} (\frac{1-\cos^2 x}{(1+\cos x)\sin x}) = \lim_{x\to 0} (\frac{\sin x}{1+\cos x}) = 0$$
 لان: 0 لان: 0 الدالة $f(x) = \lim_{x\to 0} (\frac{1-\cos^2 x}{(1+\cos x)\sin x}) = \lim_{x\to 0} (\frac{\sin x}{1+\cos x}) = 0$

(
$$\dot{0}$$
 1) $\lim_{x \to 0} f(x) = f(0) = 0$ و

2)الدالة f تقبل الاشتقاق عند القيمة 0 الأن:

$$\lim_{x \to 0} \left(\frac{f(x) - f(0)}{x - 0} \right) = \lim_{x \to 0} \left(\frac{1 - \cos x}{x \sin x} \right) = \lim_{x \to 0} \left(\frac{\sin x}{x (1 + \cos x)} \right) = \lim_{x \to 0} \left(\frac{\sin x}{x} \times \frac{1}{1 + \cos x} \right)$$

$$\left(\dot{0} \right) \qquad \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 1 \times \frac{1}{2} = \frac{1}{2} = f'(0)$$

التمرين الثالث (C) حلول المعادلة f'(x) = 0 في المجال f(x) = 0 هي فواصل نقط المنحنى (C) التي يكون معامل توجيه المماس فيها معدوما و هي f'(x) = 0 (0.5)

(0.5) [0;2] الدالة f متزايدة تماما على كل من المجالين [-2;0] و [-2;0] و [-2;0] متناقصة تماما على المجال [0;2] (0.5) الدالة f متزايدة تماما على f على f على f على f

				_ O J	•	•
Х	8	0		2		+∞
f'(x)	+	0	-	0	+	
f(x)		1		_,		1
	-∞			0.5		

[AB] على المعادلة f(x) = 0 على المجال [-2;4] هي فواصل نقط تقاطع (C) مع القطعة المستقيمة [AB] عدد حلول المعادلة A(-2,0) و A(-2,0) يوجد حل وحيد و هو A(-2,0) .

(
$$\dot{\upsilon}$$
1) $\lim_{x\to +\infty} f(x)=1$: $\dot{\upsilon}$ 1 : $\dot{\upsilon}$ 4 : $\dot{\upsilon}$ 4 : $\dot{\upsilon}$ 6 : $\dot{\upsilon}$ 7 : $\dot{\upsilon}$ 8 : $\dot{\upsilon}$ 9 : $\dot{\upsilon$

$$\lim_{x \to +\infty} (f(x) - 1) = 0$$

(ن0.5)
$$h'(x) = xe^{-x}(x-2)-1: x \in [0;2]$$
 $[0;2]$ $[0;2]$ على المجال $h'(x) = xe^{-x}(x-2)-1: x \in [0;2]$ $[0;2]$ على المجال $h'(x) < 0: x \in [0;2]$ $[0;2]$

[0;2] الدالة المجال متناقصة تماما على المجال

х	0	2
h'(x)	-	
h(x)	$\frac{4}{e2}$	-1

المعادلة f(x)=x تقبل حلا وحيدا في f(x)=1 لأن f(x)=x تكافئ f(x)=x تكافئ و الدالة f(x)=x مستمرة

(0.5)
$$(h(0) \times h(2) < 0)$$
 و رتبیة تماما $(h(0) \times h(2) < 0)$ و رتبیة تماما $(h(0) \times h(2) < 0)$ و رتبیة تماما ($h(0) \times h(2) < 0$

. $h(\alpha)=0$ يحقق $0<\alpha<2$ دن يوجد α

$$a=1;b=-1$$
 نجد $f(0)=0$ و $f'(0)=0$ و $f'(0)=0$ نجد $f(0)=0$ نجد $f($

(ن 0.5)]
$$-\infty$$
, 0] و متناقصة تماما على المجال $[0;+\infty[$ الدالة f متزايدة تماما على f متزايدة تماما على المجال (2 في الدالة f متزايدة تماما على المجال على المجال أعلى ا

جدول التغيرات:

Х	-∞	0		+∞
F'(x)	-	0	+	
F(x)	+∞ <			→ +∞
		0		

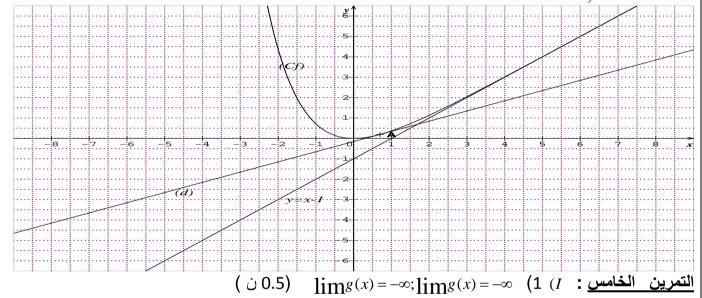
(ن 0.5) : المستقيم (α) الذي معادلته y = x - 1 مقارب مائل للمنحنى (α) بجوار α + لان

$$\lim_{x \to +\infty} (f(x) - x + 1) = \lim_{x \to +\infty} (\frac{1}{e^x}) = 0$$

y = Ln2 ونجد $e^{-x} = \frac{1}{2}$ تكافئ $f'(x) = \frac{1}{2}$ معناه $y = \frac{1}{2}x + 1$ ونجد e^{-x} و ونجد (d)

$$(0.5+0.5+0.5)$$
 $y = \frac{1}{2}x + \frac{1}{2}\ln 2 - \frac{1}{2}:(d)$ $A(Ln2; \ln 2 - \frac{1}{2})$

 $(\dot{0}):(C_f)$ و (d) (5) (5)



1/4) $[0;+\infty[$ متناقصة تماما على $]-\infty;0]$ متزايدة تماما على الدالة g متزايدة تماما على . (ن0.5) $g'(x) = \frac{-3x(x^2+1)}{\sqrt{x^2+1}} : x \in \square$

X	+∞		0		
g'(x)		+	0	-	
g(x)			→ 0 →		
	-∞				→ -∞

g(x)=0 تكافئ x=0 المعادلة: g(x)=0 تكافئ (3

(ن 0.25)
$$g(x) \leq 0$$
: من جدول التغيرات نلاحظ أن (4

$$f'(x) = -1 + \frac{\sqrt{x^2 + 1} - x \times \frac{2x}{2\sqrt{x^2 + 1}}}{(\sqrt{x^2 + 1})^2} : x \in \square$$
 : الدالة المشتقة (1 (II

(
$$\dot{\cup}$$
 0.5) $f'(x) = \frac{g(x)}{(x^2+1)\sqrt{x^2+1}} : x \in \Box$

(
$$\dot{\upsilon}$$
 0.5)
$$\lim_{x \to -\infty} f(x) = +\infty; \lim_{x \to +\infty} f(x) = -\infty$$
(2

(د.0.5 الدالة f متناقصة تماما على الدالة الدال

			جدول التغيرات:	
X	- 8	0	+∞	
f(x)	-	0	-	
f(x)				
			∞-	

x	-∞	0	+∞
f'(x)	-	0	-
f(x)	+∞		

(30.5) النقطة
$$f(x)+f(-x)=-x+1+\frac{x}{\sqrt{x^2+1}}+x+1-\frac{x}{\sqrt{x^2+1}}:x\in\Box$$
 (3 $f(x)+f(-x)=2:x\in\Box$

($\dot{0}$ 0.25) y = 1:(D): (4

المعادلة f(x)=0 تقبل حلا وحيدا β يحقق: 0<1 لأن الدالة المعادلة ومتناقصة تماما (5