امتحـــان الفصـل الأول فــي مـادة الرياضيـــات

ثانوية قهواجــي بــوعلام 2011 - 2012

قسم: 3 ر المدة: 4 ساعات

التمرين الأول: (3 نقاط)

- (E): 8x-5y=3 عين مجموعة الثنائيات (x;y) من (x;y) عين مجموعة الثنائيات (x;y)
- m=8p+1 ييكن m عددا صحيحا بحيث توجد ثنائية $\left(p;q\right)$ من الأعداد الصحيحة تحقق: 1+8p+1

. $m \equiv 9[40]$: واستنتج أن الثنائية (p;q) هي حل للمعادلة (E) ، واستنتج أن m=5q+4

. 1433 عين أصغر عدد طبيعي m أكبر من (3

التمرين الثاني: (4 نقاط)

 $\beta_n = n+2$, $\alpha_n = n^2 + n$: عدد طبیعي ، نضع n

 $n\beta_n - \alpha_n = n$: أ. تحقق أن (1

 $PGCD(\alpha_n, \beta_n) = PGCD(\beta_n, n)$: ب. أثبت أن

 $PGCD(\alpha_n, B_n)$ ج. استنتج القيم الممكنة لـ

 $a=\overline{3520}$, $b=\overline{384}$: ين أن العدد b,a (2 في نظام تعداد ذي الأساس a كما يلي b عددان طبيعيان يكتبان في نظام تعداد ذي الأساس a أ. بين أن العدد a 3 فاسم مشترك a و a .

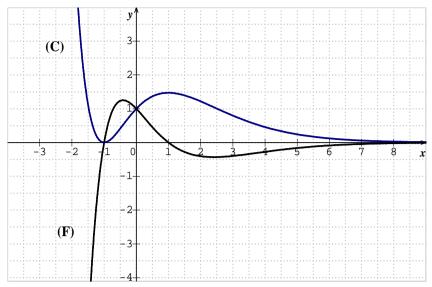
2(3n+2) ب. استنتج أنn+2 هوPGCD(a;b) أو

PGCD(a,b) = 41:ج. عين B_n, α_n إذا علمت أن

التمرين الثالث: (4 نقاط)

- . 10 على n ادرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد n على -1
 - . 10 على 63 ما استنتج باقي القسمة الإقليدية للعدد $7^{1433} 7^{1433}$ على
- $3n \times 9^n + 7^{2n+1} \equiv (n-1)3^{2n+1} \begin{bmatrix} 10 \end{bmatrix}$: يكون n يكون غدد طبيعي المحدد طبيعي (أ–2
 - $3n \times 9^n + 7^{2n+1} \equiv 0$ [10] : بين قيم العدد الطبيعي n حتى يكون (ب

التمرين الرابع: (9 نقاط)


الممثلين لدالتين معرفتين (C) و (C) الممثلين لدالتين معرفتين و المنتقاق على \Box .

نعلم أن إحدى هاتين الداتين هي مشتقة الدالة الأخرى . نرمز بg' و g' لهاتين الدالتين .

اعتمادا على الشكل أدناه ، الذي يعطى التمثيلين البيانيين للدالتين g و g' ، أجب على السؤالين التاليين :

. أرفق بكل من الدالتين g و g' تمثيلها البياني (1

. g برر الإجابة بتشكيل جدول يتضمن على المجال $\left[\frac{-3}{2};5\right]$ إشارة g'(x) و تغيرات g'(x)

2) ما هو معامل توجيه المماس للمنحنى (C) عند النقطة ذات الفاصلة (2

الجزء الثاني: حل معادلة تفاضلية: نعتبر المعادلتين التفاضليتين:

.
$$y' + y = 0...(E')$$
 $y' + y = 2(x+1)e^{-x}...(E)$

الهدف من هذا الجزء هو حل المعادلة (E) و تعيين حلول خاصة لها .

- . (E) هي حل للمعادلة φ المعرفة على $\varphi(x) = (x^2 + 2x)e^{-x}$ بين أن الدالة φ المعادلة (1
 - (E') حل المعادلة (2
- .(E) جين أن : تكون الدالة $\varphi + u$ حلا للمعادلة (E') إذا و فقط إذا كانت الدالة: u حلا للمعادلة (3)
 - . (E) استنتج عبارة الحلول f للمعادلة (4
 - . $x \in \square$ من أجل g(x) علما أن الدالة g الواردة في الجزء الأول حل للمعادلة (E) علما أن الدالة والعربة في الجزء الأول على الخراء الخراء
 - . عين الحل h للمعادلة (E) التي تمثيلها البياني يقبل عند النقطة ذات الفاصلة (E) مماسا أفقيا (E)

الجزء الثالث: دراسة دالة وحل مقرب لمعادلة

. $f(x) = (x^2 + 2x + 2)e^{-x}$ ب الدالة المعرفة على الدالة الدالة المعرفة على الدالة الد

 $(C;\vec{i},\vec{j})$ وحدة الرسم ($C;\vec{i},\vec{j}$) وحدة الرسم ($C;\vec{i},\vec{j}$) وحدة الرسم

- . $-\infty$ عين نهايتي الدالة f عند f عين نهايتي (1
- . f الدالة f' الدالة f' الدالة f' الدالة المشتقة f' الدالة الدالة f'
 - . -1 عين معادلة لـ (D) المماس للمنحنى (Γ) عند النقطة ذات الفاصلة (D)
 - . (Γ) ثم المنحنى (D) ثم المنحنى (4
 - . α على α حلا وحيدا α بين أن المعادلة α

. α للعدد 0,1 للعدد على جد النتيجة بيانيا و أعط قيمة مقربة