$f(x) = \frac{x-1}{x+2} + \ln\left(\frac{x}{x+2}\right)$: وليكن (05) تمثيلها البياني في معلم متعامد ومتجانس وليكن ($(C; \vec{i}, \vec{j})$) معلم متعامد ومتجانس وليكن ($(C; \vec{i}, \vec{j})$) معلم متعامد ومتجانس تغير ات الدالة $(C; \vec{i}, \vec{j})$

بیّن أن (C) یقبل عند نقطتین منه A و B مماسین معامل توجیه کل منهما یساوی A ، عیّن عندئذ إحداثیات نقطتی التماس A و A

$$x_{0} \in \left[\frac{13}{4}, \frac{7}{2}\right]$$
 حيث ان المعادلة $f(x) = 0$ تقبل حلا وحيدا $x_{0} = 0$

(C) ثم أنشئ f(-3) ، f(-5) ، f(2) حسب -4

-5 ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد و إشارة حلول المعادلة ذات المجهول

$$(x+2)\ln\left(\frac{x}{x+2}\right) - mx - 2m - 3 = 0$$
: الحقيقي x التالية

 $g(x) = \frac{1}{2}x^2 - \ln(x)$: الجزء الأول :نعتبر الدالة العددية g المعرفة كما يلي (06) الجزء الأول

$$g(x) \geq \frac{1}{2}$$
: فإن $x \in \mathbb{R}_+^*$ فإن g فإن g فإن g فإن g فإن g فإن g فإن g

 $x \rightarrow f(x) = \frac{1}{2}x + \frac{\ln x}{x}$: الجزء الثاني f: الدالة العددية

 $\left(O\,, \overrightarrow{i}\,, \overrightarrow{j}\,
ight)$ المنحني الممثل للدالة f في المستوي المنسوب لمعلم متعامد ومتجانس $\left(\delta
ight)$

$$f'(x) = \frac{1+g(x)}{x^2}$$
: فإن $x \in \mathbb{R}_+^*$ فإن (1

- (δ) ادرس تغيرات الدالة f و الفروع اللانهائية للمنحني (2
- ادرس وضعية المنحني (δ) بالنسبة للمستقيم المقارب المائل (3
- 4) أثبت أن المنحنى (δ) يقبل نقطة انعطاف يطلب تعيين إحداثييها.
- $\frac{1}{2}$ هو (Δ) هو مماس للمنحني (δ) في النقطة ذات الفاصلة x_0 عيّن x_0 إذا كان ميل (δ) هو (Δ) ثم اكتب معادلة (Δ)
 - $\frac{1}{2} \prec x_1 \prec 1$: حيث x_1 اثبت أن المنحني (δ) يقطع محور الفواصل في نقطة فاصلتها أنبت أن المنحني (δ
 - (الشيئ Δ) و حدة للطول (الشيئ Δ) و (Δ) انشيئ (Δ) انشيئ (Δ) انشيئ (Δ) انشيئ (Δ)
 - $f(x) = \frac{1}{2}x + m$: ناقش بیانیا وحسی قیم الوسیط m وجود وعدد حلول المعادلة (8

الصفحـــة 14/10

ر**عداد الأسنلا.** حليلات عمام