$g(x)=e^{-x}+x-1$: التمرين الأول : يعتبر الدالة g المعرفة على $\mathbb R$ بما يلى

- 1. أدرس اتجاه تغير الدالة g
- $e^{-x} + x \ge 1$: بين أن g موجبة على \mathbb{R} واستنتج أن 2

نعتبر الدالة f المعرفة على $\mathbb R$ كما يلي : $\frac{x}{e^{-x}+x}$ كما يلي على المعرفة المعرف

- \mathbb{R}^* على ' $f(x)=rac{1}{1+rac{1}{xe^x}}$ على .1
- 9. بين ان $\lim_{{
 m x} \to -\infty} f(x) = 1$ ، و $\lim_{{
 m x} \to -\infty} f(x) = 0$ ، فسر النتيجتين بيانيا
 - \mathbb{R} من $f(x)=rac{(1+x)e^{-x}}{(e^{-x}+x)^2}$: بين أن : .3
 - f منع جدول تغيرات الدالة d
 - مبدأ المعلم المنحني (C_f) عند مبدأ المعلم .5
- نوي (Δ) تحقق أن $x-f(x)=\frac{xg(x)}{g(x)+1}$ ثم أدرس إشارة x-f(x) ، واستنتج الوضع النسبي للمنحني x-f(x)=x-f(x) والمستقيم .6 المعادلة y=x
 - رسم المستقيم (Δ) والمنحني .7

 $g(x) = \ln(x+1) - \ln x - \frac{1}{x+1}$: ين يا يا يا يا يا يا بالمعرفة على: يا إلى المعرفة على المعرفة على: $g(x) = \ln(x+1) - \ln x - \frac{1}{x+1}$

- $\lim_{\mathrm{X} o +\infty} g(\mathrm{X})$: بين أن $\ln(\mathrm{X}+1) \ln \mathrm{X} = \ln\left(1+rac{1}{\mathrm{X}}
 ight)$ ئم استنتج.
 - g أنشئ جدول تغيرات الدالة g
 -]0 ; $+\infty[$ على g(x) على]0 .3

 $\begin{cases} f(x) = x(\ln(x+1) - \ln x) \cdots ; x > 0 \\ f(0) = 0 \end{cases}$: دالة عددية معرفة بما يلي $f(x) = x(\ln(x+1) - \ln x) \cdots ; x > 0$

- 1. أدرس إستمرارية الدالة f على يمين الصفر
-]0; + ∞ [: المجال على المجال $f(x) = x \left[ln \left(1 + \frac{1}{x} \right) \right]$.2
 - نسر النتيجة هندسيا ، $\lim_{{
 m X} o +\infty} f({
 m X}) = 1$. .3
 - 4. أحسب: $\lim_{x\to 0} \frac{f(x)}{x}$ فسر النتيجة هندسيا
 -]0; $+\infty[$ علی f(x)=g(x) علی .5
 - f أعط جدول تغيرات الدالة
 - 2cm : أنشئ المنحني (C_f) وحدة الطول .7