الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية

وزارة التربية الوطنية

سعيــــدة

المؤسسة: ثانوية حمرى

امتحان البكالوريا التجريبي دورة ماي 2015

بوزیان المستوی: نهائی علوم تجریبیة

<u>هونـــــت</u>

اختبار في مادة الرياضيات المدة: 33

ساعات

على المترشح أن يختار احد الموضوعين الموضوع الأول: (20 نقطة)

التمرين الأول: (05.5 نقط)

المستوي المركب مزود بمعلم متعامد ، متجانس $(o,u,v)^{\rho}$ ، نعتبر النقطتان B,A و C ذات اللحقات

• $z_{C} = 4$ $z_{B} = \sqrt{3} - i$ • $z_{A} = 1 + i$

. أكتب الأعداد المركبة التالية z_{B} ، z_{A} و z_{B} على شكل المثلثي، ثم استنتج الشكل الأسي .

 $\sin\left(\frac{5\pi}{12}\right)$ و $\cos\left(\frac{5\pi}{12}\right)$: العدد المركب $\frac{z_A}{z_B}$ على شكله الجبري ، ثم استنتج القيم المضبوطة ل

$$\cdot \left(\sqrt{2}\frac{z_A}{z_B}\right)^{\frac{1436}{5}}$$
: أوجد قيمة العدد الطبيعي n بحيث يكون $-i-i$

 $z' = \frac{\sqrt{2}}{2} e^{i\frac{5\pi}{12}}z$: ثيكن التحويل النقطي M'(z') النقطة بكل النقطة ويرفق بكل النقطة 3.

حدد طبيعة التحويل النقطي S و عناصره المميزة.

٠٠ . أوجد المجوعة (Γ_1) لنقط (Γ_1) لنقط (Γ_1) من المستوي و التي تحقق (Γ_1) النقط (Γ_1) بنانته (Γ_1) النقط (Γ_1) بنانته (Γ_1) بنانه (Γ_1)

. $Arg(z-z_c)=\frac{\pi}{4}+2k\pi$: نجو التي تحقق M(z) من المستوي و التي تحقق (Γ_2) انقط

5. أوجد صورة (Γ_1) بالتحويل النقطي S ، استنتج مساحتها .

التمرين الثاني: (05.5 نقط)

C(1,5,6) و B(-3,-2,1) ، A(-1,-3,3) انعتبر النقط ($O,i^{\overline{w}},j^{\rho},k^{\rho}$) و B(-3,-2,1) ، متعامد ، متجانس

$$(d): \begin{cases} x = -t' \\ y = -4t' + 1 \end{cases} (t' \in IR)$$
 $(\Delta): \begin{cases} x = -1 - 2t \\ y = -3 + t \end{cases} (t \in IR)$ $(\Delta): \begin{cases} x = -1 - 2t \\ z = -2t' + 4 \end{cases}$

- 1. بين أن المستقيمان (a) و (a) يتقاطعان ، أوجد إحداثيات النقطة (a) تقاطع المستقيمين .
 - . تحقق أن BCD و $B \in (\Delta)$ ثم بين أن المثلث BCD قائم.
 - (Δ) و (d) المعرف بالمستقيمين (P) و (Δ) و (Δ)
 - A تحقق أن المستوي (d) و النقطة (Q): -4x + y 1 = 0 و النقطة 4.

- . ليكن α عدد حقيقي و النقطة σ من الفضاء .
- . $\{(B,\alpha);(C,-2\alpha);(D,5)\}$ عين شرطا على العدد الحقيقي α بحيث تكون النقطة G مرجح للجملة المثقلة G من أجل أوجد إحداثيات النقطة G من أجل أجل G من أجل أحداث أحد
 - .5 GM 2 = 36 : عين المجموعة (S) للنقط M من الفضاء بحيث 6.
 - 7. ما هي الأوضاع النسبية : أ) بين المستوي (Q) و المجموعة (S) .
 - (S) بين المستوي (P) و المجموعة

التمرين الثالث: (99 نقط)

الجزء الأول: $f(x) = 1 - \frac{1}{2}x - \frac{2}{e^x + 1}$ يلي: $f(x) = 1 - \frac{1}{2}x - \frac{2}{e^x + 1}$ يمثيلها البياني في معلم متعامد و متجانس $f(t, \vec{t}; \vec{t})$.

- ودية. $\frac{1}{e^{-x}+1}=1-\frac{1}{e^x+1}$: ، نم استنتج أن x فردية. $\frac{1}{e^{-x}+1}$
 - . $\lim_{x \to +\infty} f(x)$.2
 - $f'(x) = -\frac{1}{2} \left(\frac{e^x 1}{e^x + 1} \right)^2$: ، نا بین أنه من اجل کل x من x من (3)
 - ب) استنتج اتجاه تغیر الدالة f على ، ، ثم شكل جدول تغیر اتها.
 - $1 \frac{2}{e^x + 1} \le \frac{1}{2}x$: ` + من x کل کل جا استنتج أنه من اجل کل ج
 - النتيجة هندسيا. $\lim_{x \to +\infty} \left[f(x) (1 \frac{1}{2}x) \right]$: احسب 4.
 - . ، و المنتقيم C_f و المنتقيم $y=1-\frac{1}{2}$ على .5
- . $\int_{-1}^{0} \frac{1}{e^{x} + 1} dx$ ثم احسب . $\frac{e^{-x}}{e^{-x} + 1} = \frac{1}{e^{x} + 1}$: ' من x من x من x من x . 6
- x=-1 . أحسب مساحة الحيز المستوي المحصور بين المنحنى (C_f) و محور الفواصل و المستقيمين الذين معادلتيهما: x=0 و x=0

$$\left\{ egin{align*} U_0 = 1 \,. \\ U_{n+1} = 1 - rac{2}{e^{U_n} + 1} \end{array}
ight.$$
 الجزء الثاني: لتكن (U_n) متتالية معرفة على Ψ بالعلاقة التراجعية :

- . $U_n > 0$: n عدد طبیعي 1. انه من اجل کل عدد طبیعي 1
- . $U_{n+1} \leq \frac{1}{2}U_n$ ، n عدد طبیعی عدد الأول: تحقق أنه من اجل كل عدد طبیعی 2.
 - (U_n) استنتج اتجاه تغير المتتالية .3

 $\lim_{n\to +\infty} U_n$ يين أنه من اجل كل عدد طبيعي $u_n \leq \left(\frac{1}{2}\right)^n$: n عدد طبيعي 4.

الموضوع الثاني: (20 نقطة)

التمرين الأول: (05 نقط)

: التي المستوي منسوب إلى معلم متعامد و متجانس $(0; ec{u}; ec{v})$. نعتبر النقطتين B; A التي المستوي معلم متعامد و متجانس

$$Z_B = (\sqrt{3} - 1) + (\sqrt{3} + 1)i$$
 $Z_A = (\sqrt{3} + 1) + (\sqrt{3} - 1)i$

- . على شكله الأسي ي گذب العدد $Z_{\rm C}=Z_{\rm A}+Z_{\rm B}$
 - بين أن العدد $Z_{c}^{2016}: Z_{c}^{2016}$ عدد حقيقي موجب
- . $Z_B=i\overline{Z_A}$ و $Z_A^2=4(\sqrt{3}+i)$: رأ $Z_A^2=4(\sqrt{3}+i)$
 - Z_A^2 ب) أكتب على الشكل المثلثي العدد
- . Z_B و Z_A من من Z_A و استنتج شكل أسي لكل من Z_B و Z_A ، واستنتج شكل أسي لكل من Z_A و Z_A
 - $(\overrightarrow{OA}; \overrightarrow{OB})$: عين قيس بالراديان للزاوية
 - ب) استنتج طبيعة المثلث OAB .
 - . $|Z-Z_A|=|Z-Z_B|$: حدد مجموعة النقط M(Z) التي تحقق M(Z)

التمرين الثاني: (04 نقط)

B(3;2;-4), A(1;4;-5); lied is a size $(o;\vec{t};\vec{j};\vec{k})$ is a size D(-2;8;4), C(5;4;-3), D(-2;8;4), D(5;4;-3), D(-2;8;4), D(5;4;-3), D(-2;8;4), D(5;4;-3),

- . (ABC) بين أن x 2z 11 = 0 هي معادلة ديكارتية للمستوي (1
- مدد تمثیلا وسیطیا للمستقیم (T) الذي یشمل النقطة \vec{u} و \vec{u} شعاع توجیه له .
 - x y z = 7 : الديكارتية معادلته الديكارتية (P) /3
- $\frac{x-11}{2} = y-4=z$ بين أن المستويان (ABC) يتقاطعان و فق مستقيم (Δ) معرف بـ: $\frac{x-11}{2}$
 - ب) أثبت أن المستقيمان (T) و (Δ) ليسا من نف/س المستوي .
 - F(-3;3;5) و E(3;0;-4): النقطتان E(3;0;-4)
 - أ) تحقق من أن E و F من المستقيمين (Δ) و (T) على الترتيب.
 - (T) عمودي على كل من (Δ) و (T) بين أن

- . حيث α عدد حقيقى $\overline{ME}.\overrightarrow{FE}=\alpha$: مجموعة النقط M من الفضاء بحيث (۲) مجموعة
 - أ) حدد المعادلة الديكارتية لـ Γ) بدلالة α ، ثم عين طبيعة المجموعة Γ).
 - ب) عين قيمة α حتى يكون (Γ) مستوي محوري للقطعة (Γ) عين قيمة

التمرين الثالث: (04 نقط)

 $f(x) = \frac{9}{6-x}$: كما يأتي $f(x) = \frac{9}{6-x}$ منحناها البياني في مستوي $f(x) = \frac{9}{6-x}$. (وحدة الأطوال $f(x) = \frac{9}{6-x}$) منسوب إلى معلم متعامد و متجانس f(t,t) . (وحدة الأطوال f(t,t)) .

. أدرس تغيرات الدالة f و شكل جدول تغيراتها ثم أنشئ (C_f) في المعلم

- . $U_{n+1}=f(U_n)$ و $U_0=-3$: بعتبر المنتالية نعتبر المتتالية (U_n) المعرفة على (U_n)
- أ) باستخدام (C_f) و المستقيم ذو المعادلة y=x مثل على محور الفواصل الحدود U_1 , U_0 و U_1 دون حسابها مبرزا خطوط الرسم .
 - ب) ما تخمينك حول اتجاه تغير المتتالية (U_n) و تقاربها ؟
 - $U_n < 3$: n بين أنه من أجل كل عدد طبيعي n
 - (U_n) أدرس اتجاه تغير المتتالية
 - ج) استنتج أن (U_n) متقاربة و حدد نهايتها .
 - $V_n = \frac{1}{U_{n-3}}$: بعتبر المتتالية (V_n) المعرفة على \mathbb{N} بعتبر المتتالية (
 - أ) بين أن (V_n) متتالية حسابية يطلب تحديد أساسها و حدها الأول .
 - . (U_n) به استنتج نهایة المتتالیة V_n عبارة الحد العام V_n عبارة الحد العام V_n عبارة الحد العام V_n

التمرين الرابع: (07 نقط)

نعتبر الدالة f معرفة على المجال $]\infty+\infty[$ كما يأتي $f(x)=(\ln x)(-2+\ln x)$ و $f(x)=(\ln x)(-2+\ln x)$ منحناها البياني في مستوي منسوب إلى معلم متعامد و متجانس $f(\vec{t};\vec{t})$.

- $\lim_{x\to +\infty} f(x)$ و $\lim_{x\to 0^+} f(x)$ أحسب /1
- f أ) أدرس اتجاه تغير الدالة f و شكل جدول التغيرات .
- بين أن (C_f) يقبل نقطة انعطاف I يطلب تعيين إحداثياتها (C_f)
- . 1 عين معادلة المماس (Δ) للمنحنى (C_f) عند النقطة التي فاصلتها
 - . كا عين قيم الوسيط m التي تقبل من أجلها f(x)=m عين قيم الوسيط
- e^{β} يكون $\alpha+\beta=2$: عدد حقيقي β يحقق β يكون $\alpha+\beta=1$ يكون $\alpha+\beta$

f(1) و استنتج $f(e^2)$. f(1)

 (C_f) و (Δ) .

 $x^2f''(x) + xf'(x) - 2 = 0$: أ) تحقق أن

.]0; + ∞ [على المجال $x\mapsto xf(x)-x^2f'(x)+2x$: الله أصلية للدالة $x\mapsto xf(x)-x^2f'(x)+2x$: المجال على المجال

نتمنى لكم النجاح في شهادة البكالوريا