الموضوع الثانى

التمرين الأول: (04 نقاط)

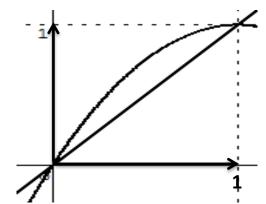
. $z^2 - 6z + 10 = 0$: المعادلة \mathbb{C} المعادلة الأعداد المركبة المعادلة .1

- . $z_B=3+i$ و $z_A=3-i$ اللتين لاحقتاهما B و A النتين المستوي المركب نعتبر النقطتين a وليكن a الدوران الذي مركزه a و a زاوية له .أوجد العبارة المركبة للدوران a
 - r صورة النقطة B بالدواران C صورة النقطة B بالدواران.

ب-استتنج طبيعة المثلث ABC.

. $L = \frac{z_A - z_D}{z_B - z_D}$. و ليكن العدد المركب D(1;1) . 4

أ- أكتب L على الشكل الجبري ثم المثلثي و الأسي.


$$\left(\frac{L}{\sqrt{2}}\right)^{2015}$$
 — أحسب

. حين قيم العدد الطبيعي n بحيث يكون: n جعين قيم العدد الطبيعي

التمرين الثانى: (04.5 نقاط)

8cm في معلم متعامد ومتجانس $(0;\ \vec{i};\vec{j})$ وحدة الطول f(x)=x(2-x) بيان الدالة (C_f) بيان الدالة (y=x) على المجال [0;1] و المنصف الأول $u_0=rac{1}{6}$ متتالية عددية معرفة ب $u_0=rac{1}{6}$

. $u_{n+1} = u_n(2 - u_n)$ و

- ا. بإستعمال الرسم المقابل مثل الحدود u_1 ، u_1 ، u_2 ، u_3 و u_3 على محور الفواصل دون حسابها.
 - . $0 < u_n < 1: n$ باستعمال البرهان بالتراجع بين أنه من أجل كل عدد طبيعي (u_n) . و أباستنج اتجاه تغيير المتتالية (u_n) . هل المتتالية (u_n) متقاربة (u_n) برر
- $v_n = ln(1-u_n): n$ ين أن المنتالية (v_n) المعرفة كما يلي: من أجل كل عدد طبيعي (v_n) المعرفة كما يلي: أن المنتالية (v_n) هندسية يطلب تعيين أساسها و حدها الأول.
 - . $\lim_{n \to +\infty} u_n$ بدلالة n ثم أحسب: u_n بدلالة n ثم أحسب v_n بدلالة n
 - $s=v_0+v_1+v_1+\cdots+v_n:$ ج) أوجد بدلالة n المجموع (ج

التمرين الثالث: (04 نقاط)

، A(1;-2;4): نعتبر النقط ($O;\ \vec{l};\vec{j};\vec{k}$) متعامد و متجانس (C(-4;0;-3)) ، نعتبر النقط (C(-4;0;-3)) ، B(-2;-6;5)

مين أن النقط A ، B و B ليست في استقامية. 1

. (ABC)ب بين أن الشعاع $\vec{n}(1;-1;-1)$ ناظمي للمستوي

ج- اوجد معادلة ديكارتية للمستوي (ABC).

. (ABC) عين تمثيلا وسيطيا للمستقيم (Δ) المار بالنقطة D و العمودي على المستوي (Δ BC).

(ABC)ب استنتج إحداثيات النقطة G المسقط العمودي للنقطة D على المستوي

 $\{(A;2);(B;1);(C.1)\}$ ج- تحقق أن النقطة G هي مرجح الجملة المثقلة

 $\|2\overrightarrow{AM} + \overrightarrow{BM} + \overrightarrow{CM}\| = d(O; (ABC))$: د-عين مجموعة النقط M من الفضاء بحيث:

التمرين الرابع: (07.5 نقاط)

$$g(x)=(x-1)e^{-x}+2$$
 با دالة عددية معرفة على R با g

- .1. أحسب نهايات الدالة g عند حدود مجموعة تعريفها.
 - 2. أدرس اتجاه تغير الدالة g وشكل جدول تغيراتها.
- -0.38; -0.37[في المجال g(x) = 0 تقبل حلا وحيدا α
 - R على g(x) على .4

$$f(x)=2x+1-xe^{-x}$$
 :با f حددیة معرفة علی جا دالة عددیة معرفة علی جا داله عددیة معرفة علی اله

.2cm و ليكن (C_f) وحدة الطول علم متعامد ومتجانس ورزي وحدة الطول

.1 – أ– أحسب نهايات الدالة f عند حدود مجموعة تعريفها.

بين أن g(x)=g(x) استنتج اتجاه تغير الدالة f و شكل جدول تغيراتها.

y=2x+1 عند (C_f) عند مائل للمنحني أن المستقيم عند المعادلة.

.(d) بالنسبة للمستقيم بادرس وضعية (C_f)

$$f(\alpha) = \frac{2\alpha^2 + \alpha - 1}{\alpha - 1}$$
 بين أن .3

- . $\alpha=-0.37$ أرسم (C_f) و (d) أرسم
- 5. أحسب بالسنتيمتر المربع مساحة الحيز المستوي المحدد بالمنحني (C_f) والمستقيمات ذات x=2 و x=0 ، y=2x+1 المعادلات
 - . حیث m عدد حقیقی y=2x+m مستقیم معادلته (Δ_m)
 - عين m حتى يكون (Δ_m) مماسا للمنحنى وررد المنحنى عين احداثياتها.
 - . أكتب معادلة للمماس (Δ_m) في هذه الحالة.
 - 3. ناقش بيانيا، وحسب قيم الوسيط الحقيقي m ، عدد و إشارة حلول المعادلة:

$$1 - \frac{x}{e^x} - m = 0$$