وزارة التربية الوطنية

2009

17 ماي 2008

امتحان بكالوريا التجريبي

لشعبة: تقني رياضي + رياضيات

اختبار في مادة الرياضيات

الموضوع الاختياري الأول

التمرين الأول: (40 ن)

 $A_n = 4C_n^2 + 8C_n^3 + \dots + 2^nC_n^n$: نعتبر من أجل كل عند طبيعي

 $A_n = 3^n - 2n - 1$: بین أنه من أجل كل عدد طبیعي $\frac{1}{2}$

 $S_n = A_0 + A_1 + \dots + A_n$ أحسب بدلالة n المجموع:

ملى قيم العدد الطبيعي n بواقي قسمة 3^n على 5. $\underline{/}$

 $A_n\equiv 0$ [5] عين الأعداد الطبيعية n حيث.

التمرين الثاني: (05 ن)

 $(0, \vec{l}, \vec{l}, \vec{k})$ الفضاء المزود بمعلم متعامد و متجانس

D(-1,4,0), C(0,3,-1), B(2,0,-1), A(1,1,0) نعتبر النقط

1- بين أن الرباعي ABCD متوازي أضلاع.

(ABC) أوجد معادلة ديكارتية للمستوي ((ABC)).

ب بين أن: x - 4y + 5z + 3 = 0 هي معادلة ديكارتية للمستوي (Q) الذي يشمل المستقيم (AB) و العمودي على المستوي (ABC) ، ثم استنتج تقاطع المستويين (Q) و (ABC).

(Q) و العمودي على (Q). الذي يشمل النقطة (C-2,0,-3) و العمودي على (Q).

(ABC) و المماسة للمستوي ((S)) التي مركز ها (S) و المستوي ((S)).

 $\underline{\hspace{0.1in}}$ أدرس تقاطع سطح الكرة (S) و المستقيم (Δ).

التمرين الثالثي: (40 ن)

"عدد حقيقي α " (*)...... $z^2-3 \propto z+17 \propto =0$ المعادلة α المعادلة α المعادلة المركبة α

<u>1</u> أوجد قيم ∞ حتى تقبل المعادلة (*) حلين مركبين مترافقين.

 $\frac{2}{2}$ حل في $\frac{1}{2}$ المعادلة $\frac{1}{2}$ من أجل $\frac{1}{2}$

نزود المستوي بمعلم متعامد و متجانس $(0,\vec{t},\vec{j})$ D ,

$$d = 5 - i$$
 , $c = 7 + 3i$, $b = 3 - 5i$, $a = 3 + 5i$

الصفحة 1 4

الموضوع الأول

 $\left(\frac{b-c}{a-c}\right)^{2009}$ على الشكل الأسي ، ثم احسب $\frac{b-c}{a-c}$ على الشكل الأسي ، ثم احسب

ب/ استنتج طبيعة المثلث ABC و أن BC = 2AC.

ج/ أوجد معادلة الدائرة المحيطة بالمثلث ABC.

C بين أنه يوجد تشابه مباشر وحيد يحول B إلى A و C الى D ، يطلب تعيين عناصره المميزة.

التمرين الرابع: (07 ن).

$$f(x)=1-rac{1}{2}x-rac{2}{e^x+1}$$
 نعتبر الدالة العددية f المعرفة على R كما يلي: (I

(C) تمثيلها البياني في المستوي المزود بمعلم متعامد و متجانس ($(\vec{l},\vec{l},\vec{j})$).

$$\frac{1}{e^{-x}+1} = 1 - \frac{1}{e^{x}+1}$$
 : x عند حقیقی عند عند عند من أجل كل عند عند عند عند عند عند $\frac{1}{e^{-x}+1}$ استنتج أن f دالة فردية.

 $+\infty$ عند f(x) غيد $\frac{-2}{2}$

$$f'(x) = -\frac{1}{2} \left(\frac{e^x - 1}{e^x + 1}\right)^2 : x$$
 عدد حقیقی $x = \frac{1}{2} \left(\frac{e^x - 1}{e^x + 1}\right)^2 : x$ عدد حقیقی $f'(x) = -\frac{1}{2} \left(\frac{e^x - 1}{e^x + 1}\right)^2 : x$ برا شکل جدول تغیر ات الدالة f علی f

$$1 - \frac{2}{e^x + 1} \le \frac{1}{2}x : x$$
 استنتج أنه من أجل كل عدد حقيقي موجب

بین أن (C) یقبل مستقیم مقارب مائل (Δ) عند ∞ + یطلب تعیین معادلته.

 $\underline{\mathbf{c}}$ أنشئ (Δ) و (\mathbf{C}).

$$R$$
 على $x\mapsto rac{1}{x_{+1}}$ الدالة أصلية للدالة $\chi\mapsto -\ln(e^{-x}+1)$ على -6

ب/ أحسب مساحة الحيز للمستوي المحصور بين المنحني (C) و محور الفواصل و و المستقيمين اللذين معادلتيهما x=0 , x=-1

$$u_{n+1}=1-rac{2}{e^{u_n}+1}:\,n$$
 نعتبر المتتالية (${
m U}_{
m n}$) المعرفة بـ $u_{0}=1$ و من أجل كل عدد طبيعي ($U_{
m n}$) نعتبر المتتالية ($U_{
m n}$)

 $u_{
m n}>0:n$ بین بالتراجع أنه من أجل كل عدد طبیعي -1

$$u_{n+1} \leq \frac{1}{2}u_n$$
 : $u_{n+2} \leq \frac{1}{2}u_n$: $u_{n+1} \leq \frac{1}{2}u_n$ عدد طبیعي $u_{n+1} \leq \frac{1}{2}u_n$ نتیج أن المتتالیة $u_{n+1} \leq \frac{1}{2}u_n$ متناقصة.

. $\lim_{n \to +\infty} u_n$ نه من أجل كل عدد طبيعي $u_n \leq \left(\frac{1}{2}\right)^n : n$ عدد طبيعي عدد طبيعي أنه من أجل كل عدد طبيعي عدد طبيعي أ

الصفحة 2\4

الموضوع الأول

انتمى

الموضوع الاختياري الثاني

التمرين الأول: (40 ن)

يحتوي كيس على n كرة بيضاء كلها تحمل الرقم 2 و 4 كرات حمراء تحمل الأرقام 0 , 1 , 1 , 0 ، لا نفرق بين كل الكرات في اللمس ، نسب في آن واحد كرتين.

- $\frac{3}{7}$ عين العدد الطبيعي n حيث يكون احتمال الحصول على كرتين من نفس اللون هو $\frac{5}{7}$.
 - **.** نضع: 3 2

1/ أحسب احتمال الحصول على كرتين مختلفتين في اللون علما أنهما تحملان الرقم 2.

 $\underline{\hspace{0.1in}}$ نعتبر المتغير العشوائي X الذي يرفق بكل عملية السحب مجموع الرقمين.

<u>a</u> عين قيم X.

X عين قانون احتمال X.

X أحسب كل من الأمل الرياضياتي و التباين و الانحراف المعياري للمتغير العشوائي X.

ج / نعيد التجربة "سحب كرتين في أن واحد" 8 مرات.

- احسب احتمال الحصول على كرتين من نفس اللون ثلاث مرات بالضبط.

التمرين الثاني: (40 ن)

نعتبر في مجموعة الأعداد المركبة C كثير الحدود P(z) للمتغير المركب z حيث:

$$P(z) = z^3 - (4+i)z^2 + (13+4i)z - 13i$$

P(z) = 0 بين أن i حلا للمعادلة $\frac{1}{i}$

 $P(z) = (z - i)(z^2 + az + b)$ حيث: b, a حيث b, a بالحدين الحقيقين

P(z) = 0 المعادلة: P(z) = 0

نزود المستوي بمعلم متعامد و متجانس (C , B , A ، $(o, \vec{\iota}, \vec{\jmath}$) ثلاث نقط لواحقها على الترتيب:

$$.Z_{\rm C} = 2 - 3i$$
 , $Z_{\rm B} = 2 + 3i$, $Z_{\rm A} = i$

 $Z_{
m E}-Z_{
m B}={
m e}^{irac{\pi}{4}}\left({
m Z}_{
m A}-{
m Z}_{
m B}
ight)$ عين اللاحقة $_{
m E}$ للنقطة $_{
m E}$ التي تحقق

ب/ استنتج طبيعة التحويل الذي يحول A إلى E و B إلى نفسها.

 $3MA^2 - MB^2 - MC^2 = -12$ عين () مجموعة النقط M من المستوي حيث: 3 مجموعة النقط () عبن (

التمرين الثالث. (40 ن)

 \propto عدد حقيقي من المجال]0,1 « عدد حقيقي من المجال

 $u_{n+1}=rac{(1+lpha)u_n-lpha}{u_n}$: المعرفة بـ $u_0=2$ و من أجل كل عدد طبيعي $u_0=1$ المعرفة بـ $u_0=1$

 $u_{\rm n} \geq 1: n$ بر هن بالتراجع أنه من أجل كل طبيعي $u_{\rm n} \geq 1: n$ بين أن المتتالية (U_n) متناقصة.

الصفحة 3 4 4

المهضهم الثاني

أقلعم الصفحة عرى فضاك

$$egin{aligned} .l \ i \ m \ u_n & .t \ u_n \end{aligned}$$
 استنتج أن (U_n) متقاربة ، ثم احسب $+\infty$

$$v_n = rac{n-1}{u_n-lpha}$$
 :ب n عدد طبیعي المعرفة من أجل كل عدد (V_n) المعرفة من أجل -2

 \propto بین أن (V_n) هندسیة أساسها \sim

$$\underline{v}$$
 أكتب n بدلالة n و ∞ ، ثم استنتج u_n بدلالة n و ∞ . \underline{v} أكتب n بدلالة n السؤال 1 - جـ/ و ذلك بحساب u_n السؤال u_n

$$-+\infty$$

التمرين الرابع: (80 ن)

$$f(x)=-x+\ln(x+1)$$
 دالة عددية معرفة على المجال $-1,+\infty$ المجال $f(x)=-1$ دالة عددية معرفة على المجال $f(x)=-1$

 $(0,\vec{1},\vec{j})$ تمثيلها البياني في المستوي المزود بمعلم متعامد و متجانس ((C)

النتيجة بيانيا عند 1- بقيم أكبر ثم فسر النتيجة بيانيا المالية الماليجة ال

 $+\infty$ عند f أحسب نهاية الدالة أحسب

جر أدرس اتجاه تغيرات الدالة f، ثم شكل جدول تغيراتها.

 $\ln(x+1) < x$: استنتج أنه من أجل كل x موجب تماما

ب ماذا تستنتج? حل في R المعادلة: f(x) + x = 0

د. بین أن (C) یقبل مماسا (Δ) معامل توجیهه 1، یطلب تعیین معادلته.

.(C) و (Δ) شم أنشئ (Δ) , $f\left(\frac{13}{2}\right)$, $f\left(\frac{7}{2}\right)$ و (Δ)

 $[-1, +\infty[$ على المجال $[-1, +\infty[$ على المجال $[-1, +\infty[$ على المجال $[-1, +\infty[$ على المجال $[-1, +\infty[$ عدد حقيقي من المجال [-1, 0].

- أحسب مساحة $S(\lambda)$ للحيز المستوي المحدد بالمنحني (C) و المستقيمات التي معادلتها

$$x = \lambda$$
 , $x = 0$, $y = -x$

 $\lim_{\lambda \to -1} S(\lambda) = -1$

 $\ln(1+k) - \ln k < \frac{1}{k}$: السؤال 1- د/ بين أنه من أجل كل عدد طبيعي غير معدوم $\frac{1}{k}$: السؤال 1- د/ بين أنه من أجل كل عدد البيعي غير معدوم $\frac{1}{k}$

$$\ln(n+1) < 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
 استنتج أنه من أجل كل عدد طبيعي غير معدوم

$$\lim_{n \to +\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) : \underbrace{-1}_{+\infty}$$

الصفحة 4 4

الموضونم الثانبي

انتمى