الجمهورية الجزائرية الديمقراطية الشعبية إختبار في مادة الرياضيات

وزارة التربية الوطنية

السنة الدراسية 2010/2009

المستوى: 3رياضى

التمزين ألأول (4 نقاط):

المرس حسب قيم العدد الطبيعي n بواقي القسمة الإقليدية للعدد n على 10 أدر س

10 على $(23 \times 9^{2010} - 7^{2009})$ على 2/ إستنتج باقى القسمة الإقليدية للعدد

 $3n \times 9^n + 7^{2n+1} \cong 0$ اً : يكون يكون يكون الطبيعي n حين قيم العدد الطبيعي ألم حتى يكون يكون

 $(O, \overset{
ightarrow}{i}, \overset{
ightarrow}{g})$ التمرين الثانى (6.5 نقاط): المستوي منسوب إلى معلم متعامد ومتجانس

 $h(x) = e^x(1-x)+1$ بعتبر الدالة h المعرفة على \Re ب

h أدر س تغير ات الدالة h

[1.27, 1.28] يين أن المعادلة h(x) = 0 تقبل حلا وحيدا α في المجال h(x) = 0

 \Re استنتج إشارة h(x) على f(x)

البياني $f(x)=rac{x}{e^x+1}+2$: بالمعرفة على $f(x)=rac{x}{e^x+1}+2$ التكن الدالة المعرفة على المعرفة المع

f بين أن f'(x) و h(x) نفس ألإشارة ، ثم أدرس تغيرات الدالة h(x)

(C) مقارب مائل للمنحنى v = x + 2 أذو المعادلة (Δ) أذو المعادلة (Δ) أنو المعادلة (Δ) أنو المعادلة (Δ)

 $f(\alpha)$ بين أنه يوجد عددين طبيعيين q و q بحيث p بحيث $f(\alpha) = p\alpha + q$ ثم إستنتج حصرا للعدد (3

 (Δ) أدرس الوضع النسبي للمنحنى (C)و المستقيم /4

 $(o, \vec{i}, \vec{g}, \vec{k})$ التمرين الثالث (5.5نقاط): الفضاء مزود بمعلم متعامد ومتجانس

 (p_1) : -2y+z+4=0 , (p_2) : y+2z+1=0 : نعتبر المستویین (p_2) و (p_2) متعامدان ثم عین التمثیل الوسیطي للمستقیم (p_2) و (p_1) متعامدان ثم عین التمثیل الوسیطی المستقیم (p_2) و (p_1) متعامدان ثم عین التمثیل الوسیطی المستقیم (p_2) و (p_1) متعامدان ثم عین التمثیل الوسیطی المستقیم (p_2) و (p_1) متعامدان ثم عین التمثیل الوسیطی المستقیم (p_2) و (p_1) در المستقیم (p_2) و (p_2) در المستقیم (p_2) و (p_1) در المستقیم (p_2) و (p_2) در المستقیم (p_2) در المستقیم (p_2) و (p_2) در المستقیم (p_2) در المستقیم (p_2) و (p_2) در المستقیم (p_2) در المستقیم (p_2)

 (p_1) عين التمثيل الوسيطي للمستقيم (Δ_1) الذي يشمل النقطة $(2, \frac{3}{5}, -\frac{4}{5})$ والعمودي على $(2, \frac{3}{5}, -\frac{4}{5})$

 (p_2) عين التمثيل الوسيطي للمستقيم (Δ_2) الذي يشمل النقطة A_2 $(1, \frac{9}{5}, -\frac{2}{5})$ والعمودي على (Δ_2)

بین أن (Δ_1) يقطع بين أن (Δ_1) بين أن بين أن يقطع بين أن المحمد بين أن المحمد بين أن المحمد بين أن المحمد ال

 A_2 عين المعادلة الديكار تنية لسطح الكرة المماسة للمستويين (p_2) و (p_3) عين المعادلة الديكار A_3 عين المعادلة الديكار A_3

 $\begin{cases} v_0 = 2 \\ v_{n+1} = \frac{u_n + 4v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_{n+1} = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 = -1 \\ u_0 = \frac{u_n + v_n}{5} \end{cases}$ ' $\begin{cases} u_0 =$

 $u_n < v_n : n$ بر هن أن من أجل كل عدد طبيعي / 1

(مند سية) متتالية $w_n = u_n - v_n$ متتالية هند سية) الدرس إتبات أن المتتالية $w_n = u_n - v_n$ متتالية هند سية)

 $x_n = u_n + \frac{5}{2}v_n$: n عدد طبیعي عدد المتتالیة ((x_n) المعرفة من أجل كل عدد طبیعي 3

أ- أثبت أن المتتالية $(x_{_{n}})$ متتالية ثابتة $(v_n)_{\mathfrak{g}}(u_n)$ بين النهاية المشتركة المتتاليتين لنهاية للنهاية .