	الإمتحان التجريبي في مادة الرياضيات	متقن قصر البيخاري
المستوى : 3 رياضي		السنة الدراسية:2010/2009.
المـــدة :3 ساعات و نصف.	الموضوع الثاني	
التمرين الاول :		
	$3x + 4y = -8\dots(E)$: (E) المعادلة $Z imes Z$ المعادلة (1
		. (E) حل للمعادلة $(0,-2)$ ا
ب- حل المعادلة (E) .		
$3x+4y+8=0$ في المستوي المنسوب إلى المعلم المتعامد و المتجانس $(o; \vec{i}; \vec{j})$ نعتبر المستقيم (Δ) الذي معادلته (2		
0 نقطة من (Δ) فاصلتها A		
أ – برهن أنه إذا كانت M نقطة من (Δ) إحداثياتها أعداد صحيحة فإن AM مضاعف للعدد 5		
$AN=rac{5}{4}ig xig $: ب- لیکن N نقطة من Δ إحداثياها $(x;y)$ ، تحقق أن		
ج- إستنتج أنه إذا كان AN مضاعف للعدد 5 فإن x و y عددان صحيحان		
التمرين الثاني :		
$C\left(0;0;3 ight)$ ، $B\left(0;2;0 ight)$ ، الغضاء إلى المعلم المتعامد والمتجانس $O\left(ec{i};ec{j};ec{k} ight)$ ، نعتبر النقط		

و مستويا مستويا C و B ، A ان النقط C

(3;6;4) ب- ليكن $\overset{
ightarrow}{n}$ الشعاع الذي إحداثياه

 $(ABC\,)$ بين أن هو شعاع ناظمي على المستوي -

(ABC) ج – بين أن المعادلة 3x+6y+4z-12=0 هي معادلة ديكارتية للمستوي

 $E(rac{2}{3};-rac{2}{3};rac{1}{9})$ و النقطة δ_E بين المستوي (ABC) و النقطة δ_E

$$E$$
 قيمر بالنقطة $x=1+t$ عمودي على المستوي (ABC) عمودي على المستوي أن المستقيم المعرف بالجملة الوسيطية $z=rac{5}{9}+rac{4}{3}t$

. (ABC) عين إحداثيات المسقط العمودي G للنقطة و عين إحداثيات المسقط العمودي

. G و E باستعمال إحداثيات النقطتين $\delta_{\scriptscriptstyle E}$ باستعمال

<u>التمرين الثالث :</u>

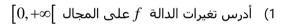
 $(o; \overrightarrow{u}; \overrightarrow{v})$ المستوي المركب المنسوب إلى معلم متعامد و متجانس

- 1) مثل هذه النقط
- ABC عين طبيعة المثلث (2
- $f\left(B\right)=A$ و $f\left(A\right)=D$ ليكن $f\left(A\right)=D$ و التشابه المباشر الذي يحقق
 - f أكتب العبارة المركبة للتشابه f
 - ω ب عین نسبته و زاویته و مرکزه
 - f هو صورة المثلث ABC هو صورة المثلث DAE بالتشابه f
 - د إستنتج طبيعة المثلث DAE
- نسمي (φ_1) الدائرة التي قطرها (φ_2) و (AB) و (AB) و نسمي (AE) و نسمي (4 (φ_1) و نسمي (4 (φ_2) و (BC) مع المستقيم (BC) و التقاطع الثانية للدائرة (φ_1) مع المستقيم (BC)
 - f عين صورة Mبالتشابه.
 - . ω استنتج طبيعة المثلث إ- ا
 - $MB \times NE = ME \times NA$: ج ہین أن

التمرين الرابع:

$$f\left(x\right)=\ln(x^{2}+4)$$
 : كما يلي (I) لتكن الدالة المعرفة على المعرفة على (I)

(أنظر الشكل) . $(o; ec{i}; ec{j})$ تمثيلها البياني في المستوي منسوب إلى معلم متعامد و متجانس (



- : ____ و الدالة المعرفة على g الدالة المعرفة على (2 g(x) = f(x) x
- . $[0,+\infty[$ أ- أدرس تغيرات الدالة g على المجال
- ب بين أن المعادلة $g\left(x\right)=0$ تقبل حلا وحيدا α على المجال α . α أوجد قيمة مقربة إلى α المجال [2,3]
 - $f\left(x\right)=x$ ج إستنتج أن α هو الحل الوحيد للمعادلة
- $U_{_{n+1}}=f\left(U_{_{n}}
 ight):\;n\;$ نعتبر المتالية $\left(U_{_{n}}
 ight):=1:$ ومن أجل كل عدد طبيعي (II
- $U_{\,2}$ و مثل معادلته x=x في المعلم السابق ، مثل النقطة x=1 ومثل ومثل ومثل و y=x ومثل على محور الفواصل على محور الفواصل
 - $1 \le U_n \le \alpha$: n أ- بين أنه من أجل كل عدد طبيعي (2
 - . بین أن $(U_{\scriptscriptstyle n})$ متقاربة ثم أحسب نهایتها

