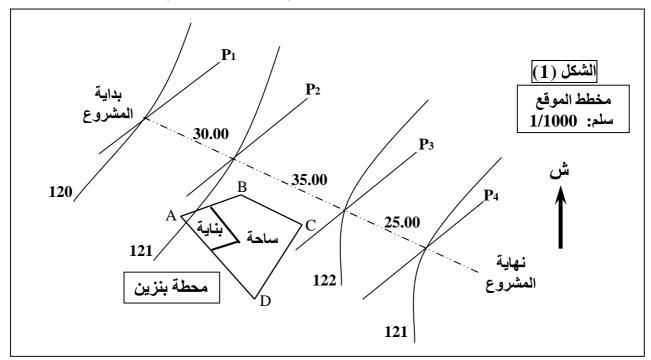
وزارة التربية الوطنية

ثانويات ولاية الجلفة

مديرية التربية لولاية الجلفة

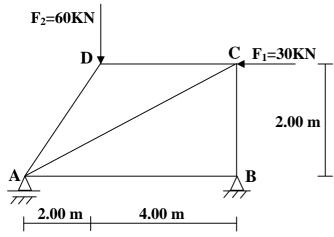

إمتحان بكالوريا تجريبي (دورة 2011)

القسم: 3 تقنى رياضى (هندسة مدنية) القسم: 3 تقنى رياضى (هندسة مدنية)

إختبار في مادة التكنولوجيا

الموضوع الأول

تقديم المشروع: في إطار توسيع شبكة المواصلات قررت المصالح المعنية إنجاز مشروع جزء طريق يمتد من المقطع P_1 إلى P_4 و بجانبه محطة تزويد بالوقود تحوي على بناية هيكلها من الخرسانة المسلحة و جزء من ساحة يعلوها غماء (لاحظ الشكل - 1-).


المسألة الأولى: 07 ن

نريد دراسة الجملة المثلثية لغماء ساحة محطة تزويد بالوقود الممثلة في الشكل الميكانيكي التالي:

المطلوب:

- 1- أدرس طبيعة النظام.
- 2- أحسب القوى الداخلية في القضبان وحدد طبيعتها باستعمال طريقة عزل العقد . ثم نظم النتائج في جدول.
- 3- حدد مقطع القضيب المحقق لشرط المقاومة _ علما أن:

الإجهاد المسموح به هو 1200daN/cm²

- صفحة 1/3

المسألة الثانية: 05 ن

يخضع عمود من أعمدة البناية ذو المقطع 25cm×25cm لقوة شد مطبقة في مركز ثقل مقطعه. المعطيات:

- $Nu = 0.25MN \bullet$
- Nser = 0.185MN
- . $\gamma_s = 1.15$ 'FeE400 HA الفولاذ من نوع
 - مقاومة الخرسانة : $f_{c28} = 25 \text{ MPa}$

$$\sigma_{\rm s}=\min\left\{ \begin{array}{l} \frac{2}{3} imes{
m fe} \ ; \ 110\sqrt{\eta imes{
m f}_{
m tj}} \end{array} \right\}$$
 حالة التشققات ضارة أي المطلوب :

- 1. حساب مقطع التسليح لهذا العمود.
- 2. تحقق من شرط عدم الهشاشة.
- c = 3 cm فيه تسليح مقطع هذا العمود. (نأخذ c = 3 cm

القطر Ф	وزن المتر	المقطع بوحدة (cm²) لعدد من القضبان يقدر بـ:					
mm	Kg/ml	1	2	3	4	5	6
10	0.617	0.78	1.57	2.35	3.14	3.92	4.71
12	0.888	1.13	2.26	3.39	4.52	5.65	6.78
14	1.208	1.54	3.08	4.62	6.15	7.69	9.23
16	1.578	2.01	4.02	6.03	8.04	10.05	12.06
20	2.466	3.14	6.28	9.42	12.56	15.70	18.84

المسألة الثالثة: 04 ن

قطعة الأرض المخصصة لإنجاز محطة التزويد بالوقود على شكل رباعي غير منتظم إحداثيات رؤوسه كما هو موضح في الجدول التالي:

النقاط	X(m)	Y(m)
A	0	50
В	40	100
C	80	100
D	80	30

- \mathbf{G}_{AC} و \mathbf{G}_{AB} و \mathbf{G}_{AB}
- \mathbf{AC} و \mathbf{AB} الطولين \mathbf{AB}
- 3 أحسب مساحة القطعة ABCD بطريقة الاحداثيات القائمة .
- 4 إذا اعتبرنا أن المساحة المخصصة لهذه القطعة $S=5000~{\rm m}^2$ من قبل المصالح المعنية هي

فهل المساحة ABCD كافية لإنجاز هذه المحطة ؟

المسألة الرابعة: 04 ن

نكتفي في هذه المسألة بدراسة المظهر العرضي P_1 من مشروع جزء طريق .

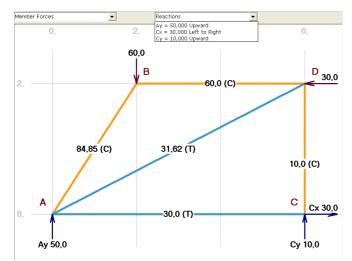
العمل المطلوب:

أتمم رسم و $\overline{\Delta}$ المظهر العرضي P_1 لمشروع جزء طريق الموجود على الوثيقة في الصفحة الثالثة ، مع توضيح طريقة و كيفية الحساب للعناصر المجهولة في الجدول .

بالتوفيق و النجاح...... أستاذة المادة

تصحيح الموضوع الأول

المسألة الأولى:
$$07$$
 ن $b=5$ ، $n=4$: 0.5


$$2 n - 3 = 8 - 3 = 5 = b$$

$$m V_B = 10~KN$$
 ، $m V_A = 50~KN$ ، $m H_B = 0$: ردود الأفعال (2 01.5

$$(N_{AD} = -84.85 \ KN \ \cdot \ N_{AC} = 31.62 \ KN \ \cdot \ N_{AB} = 30 \ KN)$$
 الجهود الداخلية : (3 02.5

(
$$N_{CD}$$
 = - 60 KN · N_{BC} = - 10 KN)

4 01.5 الجدول:

الطبيعة	الجهد (KN)	القضيب
شد	30	AB
شد	31.62	AC
إنضغاط	84.85	AD
إنضغاط	10	BC
إنضغاط	60	CD

$$\sigma=N/S\leq\overline{\sigma} \Rightarrow S\geq N/\overline{\sigma} \Rightarrow S_{min}=7.07~cm^2$$
 مساحة مقطع المجنب المناسب: 05 المسألة الثانية : 05 ن

- 1. حساب مقطع تسليح الشداد: التشققات ضارة: (A = max (Au , Aser
 - * الحساب في الحد النهائي الأخير للمقاومة:

$$\epsilon_s = 10\%$$
 : A لدينا في المدار

$$\sigma_{\rm s} = {\rm fsu} = f_{\rm e}/\gamma_{\rm s} = 400/1.15 = 347.82~{\rm MPa}$$
 0.50

$$A_u = Nu/\sigma_s = (0.25/347.82) \times 10^4 = 7.18 \text{ cm}^2$$
 0.50

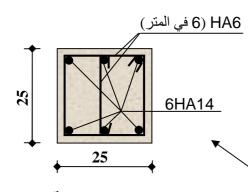
$$f_{128} = 0.6 + 0.06 \text{ x } fc_{28} = 2.1 \text{ MPa}$$
 0.50

$$\sigma_{\rm S}=\min\left\{rac{2}{3} imes {
m fe}\,;\,\,110\sqrt{\eta imes f_{tj}}
ight\}=201.63~{
m MPa}$$
 0.50 و منه المقطع النظري للتسليح :

$$A_{ser} = Nser/\sigma_s = (0.185 / 201.\overline{63}) \times 10^4 = 9.17 \text{ cm}^2$$
 0.50

$$A = 9.17 \text{ cm}^2$$
: 0.50

* مقطع التسليح الحقيقي من جدول التسليح:


$$A_s = 6 \text{ HA } 14 = 9.24 \text{ cm}^2$$
 0.50

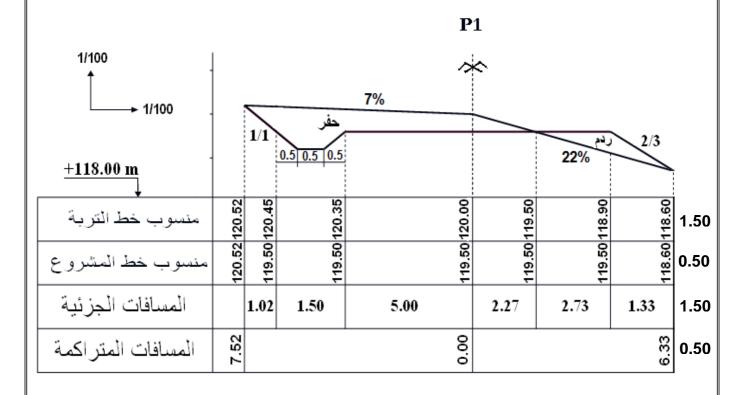
2. التحقق من شرط عدم الهشاشة:

$$A_s \cdot f_e \geq B \cdot f_{t28}$$

$$9.24 \times 400 \times 10^{-4} > 625 \times 10^{-4} \times 2.1$$
 0.75

3. الرسم المقترح: _ 0.75

ـ صفحة 1/2 ـ


المسألة الثالثة: 04 ن 1- حساب كل من GAC ,GAB : $\Delta x_{AB} = x_B - x_A = 40 \text{ m} > 0$ $\Delta Y_{AB} = Y_B - Y_A = 50 \text{ m} > 0$ $Tg(g) = |\Delta x_{AB} / \Delta Y_{AB}| = 0.8 \rightarrow g = 42.95 \text{ gr} / \Delta G_{AB} = g = 42.95 \text{ gr}$ 0.75 $\Delta x_{AC} = x_C - x_A = 80 \text{ m} > 0$ $\Delta Y_{AC} = Y_C - Y_A = 50 \text{ m} > 0$ $Tg(g) \neq \Delta x_{AC} / \Delta Y_{AC} = 1.6 \rightarrow g = 64.43 \text{ gr} / \rightarrow G_{AB} = g = 64.43 \text{ gr}$ 0.75 2-حساب الأطوال: AC,AB: **AB** = $\sqrt{(\Delta x_{AB})^2 + (\Delta Y_{AB})^2}$ \longrightarrow **AB** = 64.03m **AC** = $\sqrt{(\Delta x_{AC})^2 + (\Delta Y_{AC})^2}$ \longrightarrow **AC** = 94.33 m

AB =
$$\sqrt{(\Delta x_{AB})^2 + (\Delta Y_{AB})^2}$$
 \longrightarrow **AB** = 64.03m
AC = $\sqrt{(\Delta x_{AC})^2 + (\Delta Y_{AC})^2}$ \longrightarrow **AC** = 94.33 m

$$S = \frac{1}{2} \sum \left[X_n (Y_{n-1} - Y_{n+1}) \right] \longrightarrow S_{ABCD} = 3800 \text{ m}^2$$
 : 201

$$m S = 5000 \ m^2 > S_{ABCD} = 3800 \ m^2$$
 ينعم المساحة المخصصة كافية لأن : 4 0.5

المسألة الرابعة: 04 ن

