المستوي :2تقني رياضي. المدة : 2 سا.

اختبار الفصل الثاني في الرياضيات.

المؤسسة: ثانوية أحمد البيروني. السنة الدراسية: 2011-2012

التمرين الأول: (8ن)

$$u_{n+1} = \frac{1}{2}u_n + 2$$
: n عدد طبیعی عدد طبیعی $u_0 = 1$: این عددیة معرفة کما یلی: $u_0 = 1$

f الممثل الدالة y=x و المنحنى (Δ) الممثل الدالة y=x و المنحنى (Δ) الممثل الدالة $f(x)=\frac{1}{2}x+2$ ب المعرفة على $f(x)=\frac{1}{2}x+2$ المعرفة على المعرفة

 u_3,u_2,u_1,u_0 : ب)باستعمال الرسم السابق مثل على حامل محور الفواصل و بدون حساب الحدود (U_n) ؟ هل (U_n) متقاربة ؟

 $v_n = u_n - 4$: n نضع من أجل كل عدد طبيعي (2

ا) اثبت أن (v_n) متتالية هندسية يطلب تعين أساسها و حدها الأول.

ب) اکتب عبارة u_n بدلالة n ثم استنتج عبارة u_n بدلالة

ج)احسب نهایة المتتالیة (u_n) ماذا تستنتج؟

. $\lim_{n \to \infty} S_n$ ثم $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1}$ ثم يدلالة $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1}$

التمرين الثاني: (12ن)

نعتبر الدالة العددية f المعرفة f : $f(x) = \frac{x^2 + 3}{x + 1}$: f(x

. f عين مجموعة تعريف الدالة D_f

احسب $\lim_{x\to -1} f(x)$ ماذا تستنتج!(2

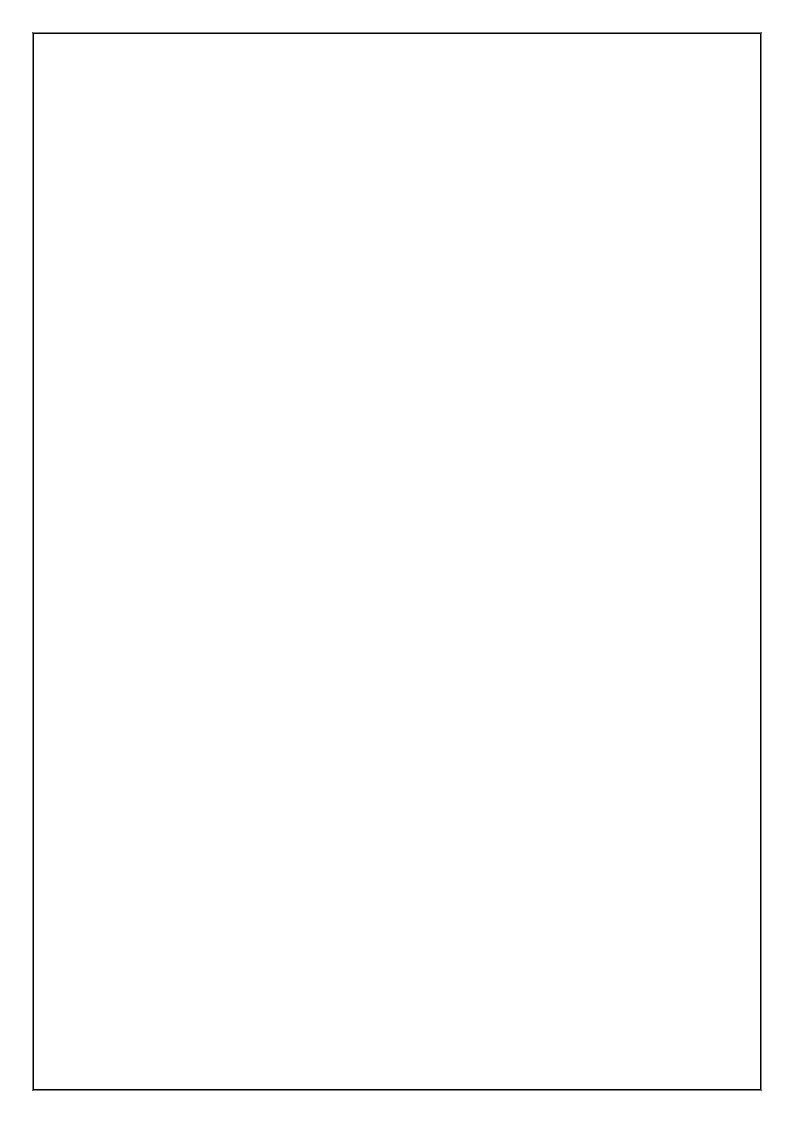
 $f(x) = ax + b + \frac{c}{x+1}$: $x \in D_f$: عيث c, b, a عيث (3

. (C_f) فو المعادلة y=x-1 هو مستقيم مقارب مائل المنحنى (Δ)

. (Δ) ادرس وضعية المنحنى (C_f) بالنسبة للمستقيم

. f أبين أن $f'(x) = \frac{(x-1)(x+3)}{(x+1)^2}$: $x \in D_f$: نم ادر س اتجاه تغير الدالة (5

 $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ ب)


اقلب الصفحة.

- ج) شكل جدول التغيرات.
- . (C_f) مرکز تناظر ل $\omega(-1;-2)$ مرکز مرکز النقطه (6
- ا) عين A نقطة تقاطع المنحنى (C_f) مع حامل محور التراتيب.
 - A عند النقطة المماس (T) عند النقطة
 - . (C_f) و (T) أنشئ (8
- : x عدد و إشارة حلول المعادلة (I) ذات المجهول x عدد و إشارة حلول المعادلة (I) ذات المجهول $x^2 mx m + 3 = 0 \cdots (I)$

بالتوفيق.

المستوى:2تقني رياضي.		تصحيح امتحان الفصل الثاني في مادة الرياضيات.	المؤسسة ثانوية أحمد البيروني. السنة الدراسية:2011-2011
العلامة.			حل نموذجي مختصر.
8نقاط.	1		
0.5ن+0.5ن	$u_{n+1} = \frac{1}{2}u_n + 2: n \in \square$ و $u_0 = 1$ و $u_0 = 1$ و u_n		
0.25ن×4	(d) و (Δ) ا) إنشاء (Δ) و (μ_3, u_2, u_1, u_2 على حامل محور الفواصل و بدون حساب.		
	-8 -7 -6 -5	3 Mo	
0.25ئ 1.25ن		$\lim_{n\to+\infty} u_n = 4$ على . u_n متقاربة و u_n . u_n	
	$v_0=-3$ و حدها الأول $q=\frac{1}{2}$ و متتالية هندسية أساسها $q=\frac{1}{2}$		
0.5ن+0.5	$u_n = -3\left(\frac{1}{2}\right)^n + 4 \text{o} v_n = -3\left(\frac{1}{2}\right)^n : n \in \square ($		
0.5ن+5.0ن	$\lim_{n \to +\infty} u_n = 4$ (ج $\lim_{n \to +\infty} u_n = 4$ کان $\lim_{n \to +\infty} u_n = 4$ کان $\lim_{n \to +\infty} u_n = 4$		
1.5ن		Γ	$S_n = (v_0 + v_1 + \dots + v_{n-1}) + 4n$
0.5ن	$\lim_{n \to +\infty} S_n = +\infty$ و منه $S_n = 6 \left[\left(\frac{1}{2} \right)^n - 1 \right] + 4n$ و منه $S_n = -3 \frac{1 - (\frac{1}{2})^n}{1 - \frac{1}{2}} + 4n$		
12نقاط		_	$\frac{1}{2}$
0.5ث	$D_f = \left] - \infty; -1 \right[igcup brace -1; + \infty \left[egin{array}{cccc} (1 & 1) & 1 & 1 \\ & & & \end{array} ight]$ التمرين الثاني:		
0.5ن	$\lim_{x \to -1} (x^2 + 3) = 4 \lim_{x \to -1} f(x) = -\infty \lim_{x \to -1} f(x) = +\infty $ (2		
0.5ن	(yy') $x = -1:(D)$ $\lim_{x \to -1<} (x+1) = 0^-; \lim_{x \to -1>} (x+1) = 0^+$ $\lim_{x \to -1>} (x+1) = 0^+$ و $b = -1$ و $a = 1$		
0.75ن			
0.5ن	$\lim_{x \to -\infty} [f(x) - (x-1)] = 0$ ا $\lim_{x \to -\infty} [f(x) - (x-1)] = 0$ و $\lim_{x \to -\infty} [f(x) - (x-1)] = 0$ مستقیم مقارب مائل لأن: $y = x - 1$: (Δ) (\((4)		
0.5ن	(۵) فوق $(C): x \in]-1; +\infty[$ لما $(C): x \in]-\infty; -1[$ فوق $(C): x \in]-\infty; -1[$ فوق $(C): x \in]-1; +\infty[$ فوق $(C): x \in]-1; +\infty[$		
		$f(x) - y > 0 : x \in]-1; +\infty[$	و $f(x) - y \le 0$: $x \in]-\infty; -1[$ و

5) الدالة f تقبل الاشتقاق عند كل قيمة من مجموعة تعريفها (دالة ناطقة) و دالتها المشتقة: 1ن $f'(x) = \frac{(x-1)(x+3)}{(x+1)^2}$ أي $f'(x) = \frac{x^2+2x-3}{(x+1)^2}$ معناه $f'(x) = \frac{(2x)(x+1)-(x^2+3)}{(x+1)^2}$ 0.5ن الدالة f متزايدة تماما على كل من المجالين $[-\infty, -3]$ و $[-\infty, -3]$ و متناقصة تماما على كل من 0.5ن .]-1,1] و [-3,-1] $\lim_{x \to \infty} f(x) = -\infty \quad \text{olim} \quad f(x) = +\infty \quad (-\infty)$ 0.5ن ج)جدول التغيرات: 1ن f'(x)0 f(x) $Y-2=X-2+\frac{4}{Y}$ و x=X-1; y=Y-2 گأن: (C) لأن: (C) مركز تناظر للمنحنى $\omega(-1,-2)$ 1ن معناه $X=X+rac{4}{V}$ نضع $X=X+rac{4}{V}$ و $X=X+rac{4}{V}$ دالة فردية. ن0.5+ن0.5 $y = -3x + 3: (T) (\hookrightarrow (C) \cap (yy') = \{A\} / A(0;3) ()$ 0.25ن y=m: (Δ_m) مع المستقيم (C) مع المستقيم فو اصل نقط تقاطع (C) مع المستقيم (D0.5ن و لدينا : $[-\infty, -6]$ لها حل مضاعف [n] لها حلين سالبين. [m] المعادلة [n] لها حل مضاعف [n]ي هو 1. المعادلة m = 2. المعادلة m = 1 ليس لها حل في m = 1 المعادلة m = 10.5ن المعادلة (I) لها معدوم والآخر موجبين. m = 3 المعادلة (I) لها معدوم والآخر موجب. 0.5 المعادلة (I) لها حلين مختلفي الإشارة. $m \in [3, +\infty]$ 0.25 8)إنشاء (C) و (8 0.5ن 1ن انتهى.

