ثانوية الكريمية: 2009 / 2008 / الأقسام: 3 ع ت المدة: 3 ساعات الختبار الثلاثي الأول في مادة العلوم الفيزيائية

التمرين الأول: (5 نقاط)

 $0_2/H_2O_2$ الماء الأكسيجيني H_2O_2 يمثل المؤكسد للثنائية H_2O_2/H_2O_3 ، ويمثل المرجع للثنائية H_2O_2 . التفكك الذاتي للماء الأكسيجيني ، هو تأثير H_2O_2 في ذاته . لدينا حجم V=1 من الماء الأكسيجيني تركيزه $c=10^{-2}\ mol.L^{-1}$.

- . أكتب المعادلتين النصفيتين لأكسدة و إرجاع H_2O_2 ، ثم أكتب المعادلة الإجمالية $oldsymbol{1}$
 - : نقيس الحجم V_{gaz} لغاز ثنائي الأكسيجين الناتج ، فتحصلنا على النتائج التالية 2

t (min)	0	5	10	15	20	25	35	55	60	70	80	100
$V_{gaz}(mL)$	0	16,0	28,8	39,5	49,0	57,2	72,0	92,4	96,0	101,5	106,0	111
$n(O_2)(mol)$												

درجة الحرارة ثابتة ، T=20 $^{ullet}C$. وعندها الحجم المولي هو T=20

- . أكمل الجدول ، حيث $n\left(O_{2}
 ight)$ كمية مادة ثنائي الأكسيجين الناتج أ
- . (ضع النتائج في جدولا $x\left(t
 ight)$ بدلالة الزمن t ضع النتائج في جدول . ب
 - $oldsymbol{x}$. $oldsymbol{t}$ بدلالة الزمن $oldsymbol{x}$

 $1.1~cm \rightarrow 10~min$; $1~cm \rightarrow 10^{-3}~mol$: السلم

- . أوجد بيانيا سرعة التفاعل في اللحظة t=0 و $t=35\,min$. قارن بين السرعتين t=0
 - **4.** أكمل الجدول التــالي: .

t (min)	0	5	10	15	20	25	35	55	60	70	80	100
$\left[\boldsymbol{H}_{2}\boldsymbol{O}_{2}\right]_{(t)}(\boldsymbol{mol.L}^{-1})$												

? حيث $\left[H_{2}O_{2}
ight] _{(t)}$ تركيز الماء الأوكسيجيني ماذا تستنتج

التمرين الثانى: (5 نقاط)

نريد دراسة حركية التفاعل البطيئ بين شوارد اليود I^- وشوارد بيروكسوديكبريتات $S_2O_8^{2^-}$ معادلة التفاعل هي : (1) التفاعل هي التفاعل

لدراسة حركية التفاعل (1) ، نحدد كمية ثنائي اليود I_2 المتشكل في اللحظة t ، وذلك بمعايرته بواسطة شوارد ثيوكبريتات $S_2O_3^{2-}$ ، حسب المعادلة التالية :

$$I_{2(aq)} + 2S_2O_{3(aq)}^{2-} \rightarrow S_4O_{6(aq)}^{2-} + 2I_{(aq)}^{-}$$
(2)

 $(K_{(aq)}^{+}+I_{(aq)}^{-})$ في اللحظة t=0~s نمزج حجم $V_{I}=40,0~mL$ من محلول مائي ليود البوتاسيوم

تركيزه $C_1 = 5,0 \cdot 10^{-1} \, mol \cdot L^{-1}$ من محلول مائي لبيروكسوديكبريتات البوتاسيوم ، $C_1 = 5,0 \cdot 10^{-1} \, mol \cdot L^{-1}$ من المزيج التفاعلي ونضيف إليه $C_2 = 1,0 \cdot 10^{-1} \, mol \cdot L^{-1}$ من صمغ النشا (يعطي لون أزرق غامق مع ثنائي اليود) بعد تمديده بحجم $V' = 30,0 \, mL$ من صمغ النشا (يعطي لون أزرق غامق مع ثنائي اليود) بعد تمديده بحجم

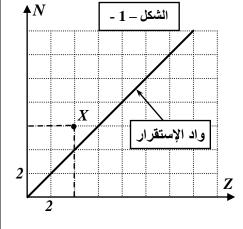
الماء المقطر ، نعاير ثنائي اليود بواسطة محلول ثيوكبريتات الصوديوم ($2\,Na^+_{\;(aq)}+S_2O_3^{\;2-}_{\;(aq)}$)، تركيزه

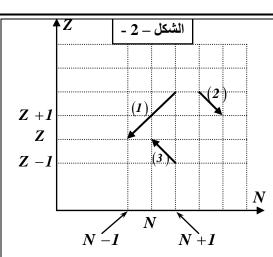
:فتحصلنا على الجدول التالي . $C_3 = 5.0 \cdot 10^{-3} \ mol \cdot L^{-1}$

t (min)	5	10	15	20	25	30	35	40
$V_{eq}(mL)$	8,0	12,0	14,0	15,2	15,6	16,0	16,0	16,0

- 1. أرسم التركيب التجريبي المستعمل لعملية المعايرة ، مع وضع البيانات عليه . كيف نعرف بأننا وصلنا إلى نقطة التكافؤ ؟
 - لنعتبر مايلي :
 - . كمية ثنائي اليود (بالمول) في العينة المُعايَرة : $n_{I_{2}}$
- حجمه يبقى : n'_{I_2} كمية ثنائي اليود (بالمول) في المزيج التفاعلي الكلي ، والذي نعتبر أن حجمه يبقى ثابتا خلال التجربة .
 - . V_{eq} و $n_{I_{,}}$ انجز جدول تقدم المعايرة ثم أوجد منه العلاقة بين 1
 - $.n'_{I_2} = \frac{V_I + V_2}{2V}.C_3V_{eq}$: نيِّن أن التجريبية ، التحريبية ،
- ج) أنجز جدول تقدم التفاعل (1) و استنتج منه العلاقة بين n'_{I_2} و التقدم x لهذا التفاعل ، ثم أكمل الحدول التالى :

t (min)	5	10	15	20	25	30	35	40
$V_{eq}(mL)$	8,0	12,0	14,0	15,2	15,6	16,0	16,0	16,0
x (mol)								


- . 1cm o 2min ; $1cm o 10^{-4}mol$: السلم المنحنى البياني للتقدم x بدلالة الزمن x
 - $t = 8 \ min$ ، السرعة الحجمية للتفاعل في اللحظة ، $mol.\ L^{-1}.\ S^{-1}$.


التمرين الثالث: (5 نقاط)

(N-Z مخطط سقري (مخطط -1- يمثل مخطط

- 1. ماذا نقصد بواد الإستقرار ؟
- من بين العناصر المبينة في الجدول التالي ماهو العنصر النظير X المبين في المخطط X

الإسم	الهيليوم <i>He</i>	الليثيوم <i>ر</i> <i>Li</i>	البيريليوم <i>Be</i>	البور <i>B</i>	الكربون <i>C</i>
Z	2	3	4	5	6

N(t)

 N_{o}

 10^{-3}

- د. هل النواة X_{z}^{A} مستقرة ؟ علل ؟
- 4. إذا كانت النواة $\frac{A}{Z}$ غير مستقرة ، أكتب معادلة التفكك مبينا نوع النشاط الذي يحدث لها ؟
- أحسب في هذه الحالة الطاقة المحررة عن تفكك النواة من أحسب ألطاقة المحررة عن تفكك $\theta,1$ من الأنوية z^AX . z^AX
- 6. بين مع التعليل أنواع النشاطات الإشعاعية الممثلة بأسهم في الشكل -2- .

M(Be)=10,0113u ; m(B)=10,0102u ; N_A = 6,023 ×10²³ mol^{-1} ; m(C) = 12,0000u : يعطى

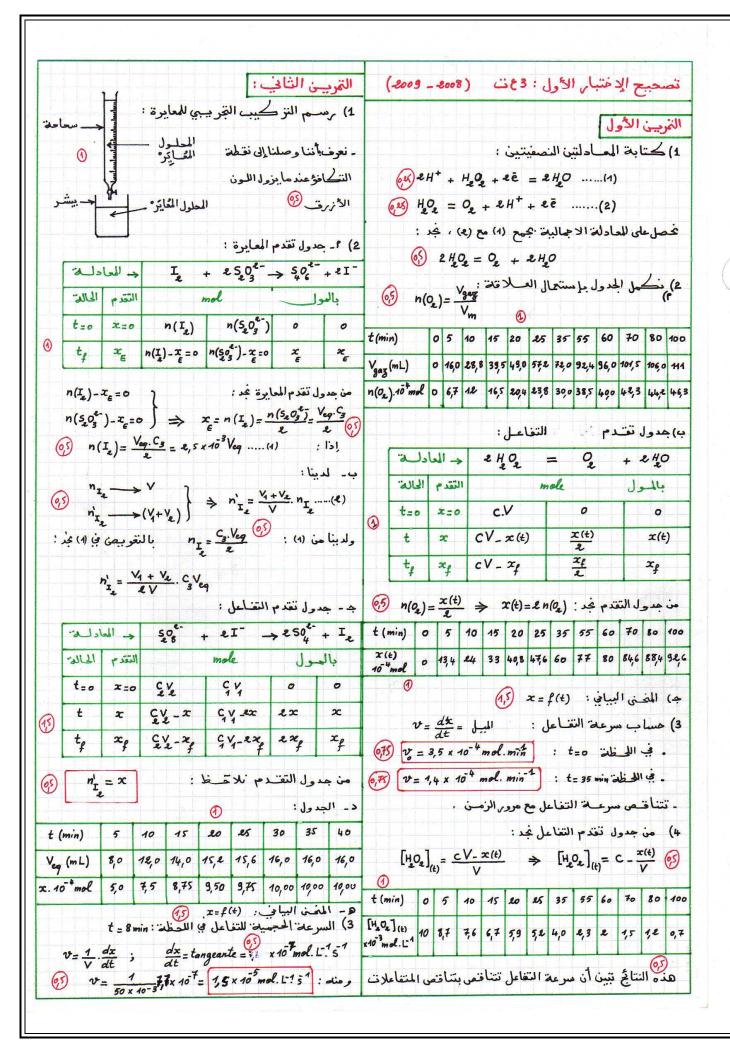
التمرين الرابع: (5 نقاط)

نقذف عينة من نظير الكلور المستقر ^{35}Cl . بواسطة نوترونات لتتحول إلى نواة مشعة ^{35}Cl ، توجد

ضمن قائمة الأنوية المدونة في الجدول أدناه:

النواة	³⁸ Cl	³⁹ Cl	³¹ ₁₄ Si	$^{18}_{~g}F$	¹³ ₇ N
$t_{{\scriptscriptstyle 1\!/\!\!\!\!/}}(s)$ زمن نصف العمر	2240	3300	9430	6740	594

سمحت متابعة النشاط الإشعاعي لعينة من $rac{N(t\,)}{N_{ heta}}$ برسم المنحنى البياني $rac{N(t\,)}{N_{ heta}}$ الموضح


الشكل -1-

في الشكل -1- حيث :

. t=0~s عدد الأنوية المشعة الموجودة في العينة في اللحظة : N_{0} –

- عدد الأنوية المشعة الموجودة في العينة في اللحظة t .
 - . $t_{\scriptscriptstyle 1/\!\!\!/}$ عرف زمن نصف العمر أ1
 - بانيا . $_{z}^{A}X$ عين قيمة زمن نصف العمر للنواة
- التفكك ($t_{\frac{1}{2}}$) أوجد العبارة الحرفية التي تربط ($t_{\frac{1}{2}}$) بثابت التفكك λ
 - $_{\mathbf{r}}$) أحسب قيمة ثابت التفكك $_{\lambda}$ للنواة
 - 3. بالاعتماد على النتائج المتحصل عليها والقائمة الموجودة في الجدول عين النواة $\frac{\Lambda}{2}X$
- النواة $^{35}_{17}Cl$ إلى المنمذج لتحول النواة $^{35}_{17}Cl$ إلى النواة $^{4}_{17}X$
 - أحسب بالالكترون فولط و بالميغا إلكترون فولط :
 - القتال للنواة X. طاقة الربط للنواة
 - -ب) طاقة الربط لكل نوية .

$$m_p=1,00728~u~;~m_n=1,00866~u~;~m~(~)=37,96011~u~;~1~u=931,5~MeV~_z^AX~:$$
يعطى $1~eV=1,6\times 10^{-19}J$ بالتو فبـــق

التمريبى الرابع

- 1) سُمي بواد الاستقرار ، لأنه يحتوي على الأنوية المستفرة (1) ١- نرمن نصف العسر يد هو الزمن اللانم لتفكك نصف عدد الأنوبة الإبتدائي.
- $\frac{N(t)}{N} = 0.5$ هو t_{3} ومناء t_{3} مسب الشكل 1 ، الرقم الذري لـ t_{3} هو t_{3} ومناء t_{3} مسب الشكل 1 ، الرقم الذري لـ t_{3} هو t_{3} ومناء t_{3}
- - $\frac{N(t)}{N} = \frac{1}{\epsilon} = e^{\lambda t_{12}} \qquad : \dot{x} = t_{12} \dot{y} = 0$
- $\int \ln \frac{1}{2} = \ln e^{\lambda t_{1}} \Rightarrow t_{1} = \frac{\ln 2}{\lambda} \dots (1)$
 - ب تعبین قیمی که للنواه Xx.

 $\lambda = \frac{\ln e}{2200} = 3,15 \times 10^{-4} \, \text{s}^{-1}$ من (١) نجد :

 $\lambda = 3,15 \times 10^{-4} \, \text{s}^{-1}$

3) بإستعال الجدول والنتائج المخصل علبها نجد:

AX = 38 Cl (5)

- 4) معادلة التفاعل المنمذج لفول الم 35 كا عام 34 هي :
- $\begin{array}{c} 35 \\ 17 \end{array} Cl + 3 \stackrel{1}{0} n \longrightarrow 38 \\ 17 \end{array} Cl$
 - 5) وطاقة الربط للنواة 38 Cl :
- (A | E | = | [Zmp + (A-Z)mn] m(X) | . C
 - | E | = | [17x 1,00728+(38-17) x 1,00866] 37,96011 | x 931,5

|E, = 0,34551 x 931,5 = 322 MeV

- (5) EL = 322 MeV ; E = 322 × 10 eV (5)
 - با طاقة الربط لكل نوبة :

 $E_A = \frac{E\varrho}{A} = \frac{322}{38} = 8,5 \text{ MeV}.$

 $E_A = 8,5 \text{ MeV}$; $E_A = 8,5 \times 10^6 \text{ eV}$ (0,5)

التمرين الثالث

- (عد منت عند)
- فالعنصر هو البيريلبوم Be. 📆
- ومنه نجد : $\frac{t_1}{2} \approx 2,2 \times 10^{35}$: النواة $\frac{t_1}{2} \approx 2,2 \times 10^{35}$ النواة $\frac{t_1}{2} \approx 2,2 \times 10^{35}$ أي ٧ بنقص د 1 و ٤ برداد د 1.
 - معادلة النفاك: : 48e -> 5B + 2e + 7 النفاك:
 - ح)- مساب الطاقاة المحررة عن تفلك نواة واحدة من Be. - النقم ف الكتلة ؛
 - (0,5) / Dm = |m(8) m(8e) = |10,0102 10,113|
 - 63 IAMI = 0,0011 W E = 931,5 x 0,0011 = 1,02 MeV
 - (0,5) E = 1,02 MeV ; . الطاقة المعربة عن تفكك و 9,1 من Be .

E'= m.N.E

E' = 0,1 x 6,023 x 10 x 1,02 = 1,5 x 10 MeV

(0,5) E'= 2,46 x 10 J

- 6) نوع الأنشطة الإشعاعية :
- النشاط الدشعاعي (١) عبائ عن تفكك به ، لأن ع
- بنقص بدع و ٧ ينقص كذلك بدع (أي نواة ٢٠١٤).
- _ النشاط الإشعامي (ع) عبارة عن تفكك + B ، لأن E ينفنص ب 1 و يزداد ٧ بـ 1. (تحول برونون إلى نونزون).
 - إلى النشاط الإنساعي (و) عبارة عن تفلك و لأن €
 - یزداد به و بتناف س ۸ به ۱ .