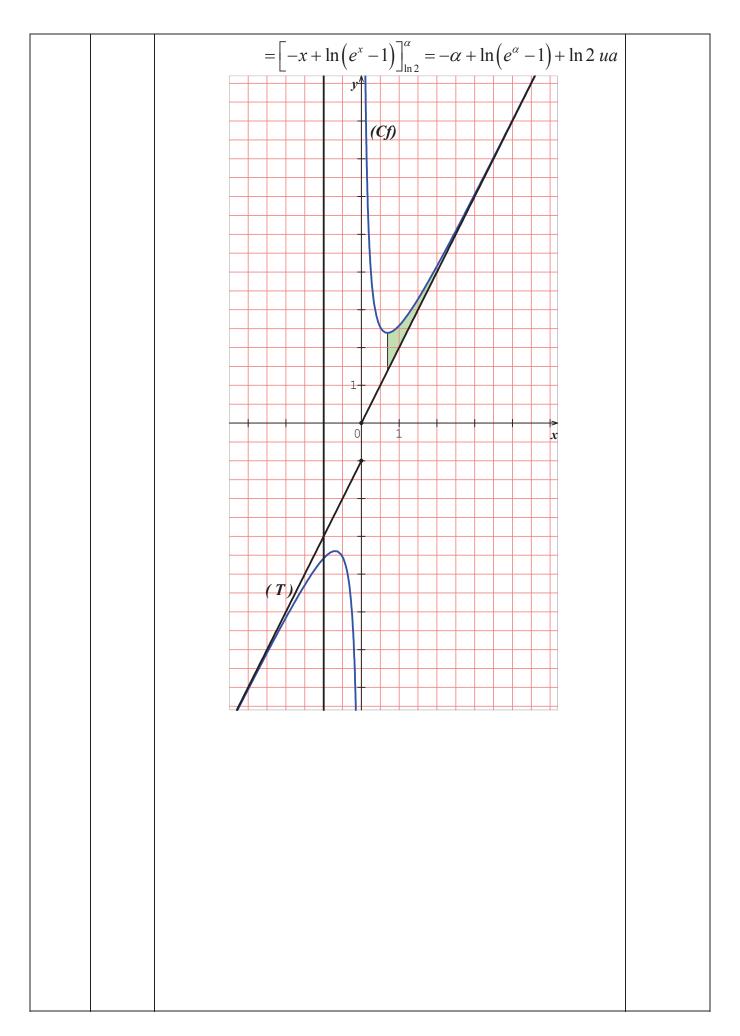
الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للتعليم والتكوين عن بعد

وزارة التربية الوطنية

تصميم جواب امتحان المستوى - دورة ماي 2011


المادة : رياضيات

المستوى والشعبة: 3 ثا /تسيير واقتصاد

العلام ـ ة		7 1 11	محاور
كاملة	مجزأة	عناصه و ر الإج و و البة	الموضوع
06 ن		. $6u_{n+1} - u_n = 2$: n ومن أجل كل عدد طبيعي غير معدوم $u_1 = \frac{1}{2}$	التمرين الأول
	01.5 ن	$u_n \leq \frac{1}{2}:n$ برهان بالتراجع أنه من أجل كل عدد طبيعي غير معدوم (1) أ	092,
		$u_1 = \frac{1}{2} \le \frac{1}{2}$ من أجل $n = 1$ لدينا $n = 1$	
		$u_{n+1} \leq rac{1}{2}$ نفرض أن $u_n \leq rac{1}{2}$ ونبر هن أن	
		$u_{n+1} \le \frac{1}{2}$ تكافئ $u_n \le \frac{1}{6}$ ومنه $u_n \le \frac{5}{12}$ ومنه $u_n \le \frac{1}{2}$	
		$u_n \leq rac{1}{2}$. یکون n فیر معدوم عدد طبیعی غیر معدوم	
	01 ن	$\cdot(u_{\scriptscriptstyle n})$ اتجاه تغیر المتتالیة \cdot	
		$f(x) = \frac{1}{6}x + \frac{1}{3}$ $u_{n+1} = f(u_n)$	
	01.5 ن	. الدالة f متزايدة و $u_1 \prec u_1$ إذن المتتالية u_n متناقصة تماما	
		$v_n = u_n - \frac{2}{5}$ (2)	
		أ) متالية هندسية $v_{n+1} = u_{n+1} - \frac{2}{5} = \frac{1}{6}u_n - \frac{1}{15} = \frac{1}{6}v_n$ (أ	
		$v_1 = \frac{1}{10}$ وحدها الأول $q = \frac{1}{6}$	
	0.25 ن	$v_n = \frac{1}{10} \left(\frac{1}{6}\right)^{n-1} : n$ ب عبارة الحد العام v_n بدلالة v_n	
		$u_n = v_n + \frac{2}{5} = \frac{1}{10} \left(\frac{1}{6}\right)^{n-1} + \frac{2}{5} : n$ عبارة u_n بدلالة	
	0.25 ن	. با المتتالية (u_n) متقاربة $\lim_{n\to +\infty}u_n=\lim_{n\to +\infty}\frac{1}{10}\left(\frac{1}{6}\right)^{n-1}+\frac{2}{5}=\frac{2}{5}$	
	0.5 ن	$S = u_1 + u_2 + \dots + u_n = v_1 + v_2 + \dots + v_n + \frac{2}{5}n$ (2)	

	01 ن	$=\frac{3}{25}\left(1-\left(\frac{1}{6}\right)^n\right)+\frac{2}{5}n$	
06 ن	0.5 ن	G(2,5;7956,66) إحداثيي النقطة المتوسطة ($G(2,5;7956,66)$	التمرين
	02 ن	تمثيل سحابة النقط المرفقة بالسلسلة الإحصائية $M_i(x_i; y_i)$ والنقطة G في (2)	الثاني
		معلم متعامد .	
	02.5 ن	$a = \frac{\left(\frac{1}{6}\sum_{i=1}^{6}x_{i}y_{i}\right) - \overline{xy}}{\frac{1}{6}\sum_{i=1}^{6}\left(x_{i} - \overline{x}\right)^{2}} = \frac{2240}{2,92} = 767,12 (3)$	
		$b = \overline{y} - a\overline{x} = 7956, 66 - 767, 12 \times 2, 5 = 6038, 86$	
		ومنه المعادلة المختصرة لمستقيم الانحدار بالمربعات الدنيا:	
	01 ن	y = 767,12x + 6038,86	
	0 01	4) رتبة السنة 2008 هي 12	
		$y = 767,12 \times 12 + 6038,86 = 15244,33$ من أجل $x = 12$ نجد	
		إذن عدد السياح في سنة 2008 هو 15244 سائح . • والمسياح في سنة 2008 هو 15244 سائح . • والمسياح في سنة 2008 هو 15244 سائح .	
08 ن		$f(x) = 2x + \frac{1}{e^x - 1}$ ب R^* ب ب R^* معرفة على R^*	التمرين
	0.5 ن	$e^{x}-1$. f دراسة تغيرات لدالة f	الثالث
	0.5 ن	$\lim_{x \to -\infty} f(x) = -\infty$	
	0.5 ن	$\lim_{x \to +\infty} f(x) = +\infty$	
	0.5 ن	$\lim_{x \to +\infty} f(x) = -\infty$	
	0.5 ن	$\lim_{x \to 0} f(x) = \infty$ $\lim_{x \to 0} f(x) = +\infty$	

0.5 ن	$f'(x) = \frac{2e^{2x} - 5e^x + 2}{\left(e^x - 1\right)^2}$
	:f'(x) إشارة
	جدول التغيرات:
0.5 ن	
	$x \mid -\infty -\ln 2 0 \ln 2 +\infty$
	g'(x) + 0 - - 0 +
	$g(x)$ -3.38 $+\infty$ $+\infty$
	_
0.5 ن	
	$e^{(x)}$ 21. e^{x} (2)
	$f(x) = 2x - 1 + \frac{e^x}{e^x - 1} (2)$
	$\lim_{x \to +\infty} (f(x) - 2x) = \lim_{x \to +\infty} \left(-1 + \frac{e^x}{e^x - 1} \right) = 0 $ (3)
0.5 ن	
	إذن المستقيم Δ (Δ) ذو المعادلة $y=2x$ مقارب للمنحني المستقيم
	جوار ∞+. (^x
0.5 ن	$\lim_{x \to -\infty} \left(f(x) - 2x + 1 \right) = \lim_{x \to -\infty} \left(\frac{e^x}{e^x - 1} \right) = 0$
	إذن المستقيم (T) ذو المعادلة $y=2x-1$ مقارب للمنحني
0.25 ن	جوار ∞ ـ .
	(C_f) وضعية كل من (Δ) و (T) بالنسبة للمنحنى (4
0.25 ن	$.(C_f)$ من اجل $f(x)-2x=\frac{1}{a^x-1}\succ 0:x\succ 0$ اِذن
	€ −1
01.5 ن	$\cdot \left(C_f\right)$ من اجل $f\left(x\right)-2x+1=rac{e^x}{e^x-1} \prec 0 : x \prec 0$ الإذن
	: إنشاء المنحني (C_f) و المستقيمين (Δ) و (T) في نفس المعلم (5)
	$g(x) = \ln(e^x - 1) (II)$
0.5 ن	$x \mapsto \frac{e^x}{e^x - 1}$ ومنه g دالة أصلية للدالة $g'(x) = \frac{e^x}{e^x - 1}$ (1)
	$e^{n}-1$ 0 ; $+\infty$ على على الم
0.5 ن	
	$\int_{\ln 2}^{a} (f(x) - 2x) dx = \int_{\ln 2}^{a} (-1 + \frac{e^{x}}{e^{x} - 1}) dx $ (2)
	

