
ملخص الوحدة

المكثفة (condensateur) : هي عنصر كهربائي تتكون من لبوسين يفصل بينهما عازل ، عندما نطبق توترا U_{AB} بين لبوسيها فإنها

 $q_A =$ - q_B تشحن حيث q(t) =q_A(t)=-q_B(t) اشحنة المكثفة:

رمز المكثفة في الدارة:

2) العلاقة بين شحنة المكثفة (q(t) وشدة التيار (i):

$$i=rac{q}{t}$$
في حالة التيار يكون ثابت تصبح العلاقة:

ر (F) حيث تقدر السعة في جملة الوحدات الدولية : الفاراد
$$C=rac{q(t)}{U_{AB}}$$

ملاحظة : بماأن قيمة السعة تكون صغيرة عادة يمكن استعمال أجزاء الفاراد : mF = 1 (ميلي فاراد) ، uF = 1 (ميكرو) . (بیکوفار اد) ما $1PF = 1 \bigcap^{-12} F$ ، (نانوفار اد) ما $1nF = 1 \bigcap^{-9} F$

$$i(t) = C \frac{d U_{AB}}{dt}$$

4) العلاقة بين شدة التيار (i(t والتوتر بين طرفي المكثفة U_{AB}:

ثانيا) دراسة ثنائي القطب RC: نحقق التركيب المبين في الشكل 02

 $U_{c} = U_{c} = U_{c}$ نصع المبدلة (K) في الوضع (1) : قانون جمع التوترات : $U_{c} + U_{R} = E$

$$\frac{dUc}{dt} + \frac{1}{RC}Uc - \frac{E}{RC} = 0$$
 : المعادلة التفاضلية : ثابت الزمن τ : يعطى بالعلاقة :

(S) وحدته وحدته
$$au=RC$$

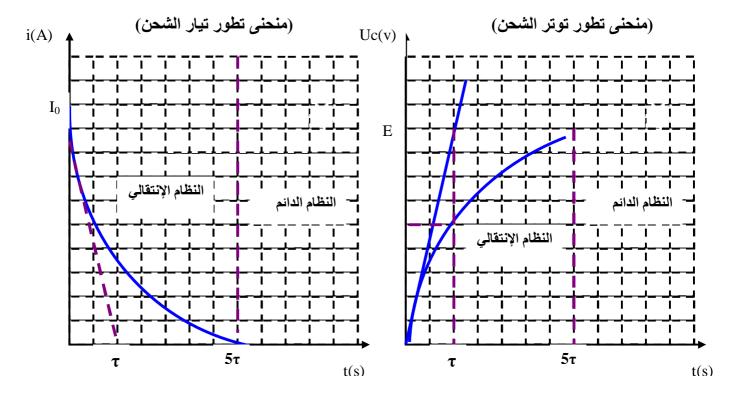
حديه: التانية (S) مدلوله الفيزيائي: الزمن اللازم لبلوغ التوتر بين طرفي المكثفة ثلثي القيمة العظمى. حل المعادلة التفاضلية:

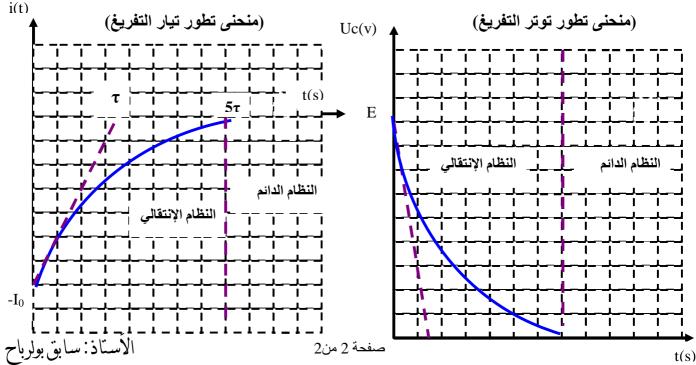
$$Uc(t) = E\left(1 - e^{\frac{-t}{\tau}}\right)$$

$$\overline{m{I}_{0}=rac{E}{R}}$$
: حيث $_{0}$ يمثل التيار الأعظمي (التيار في النظام الدائم) حيث $i(t)$ حيث $i(t)$

شكل02

(2) في حالة التقريغ : (2) نضع المبدلة (3) في الوضع (2) : قانون جمع التوترات : $U_{\rm c} + U_{\rm R} = 0$


$$U_C + U_R = 0$$
 : قانون جمع التوترات


المعادلة التفاضلية :
$$\frac{dUc}{dt} + \frac{1}{RC}Uc = 0$$

$$Uc\left(t
ight)$$
 = $\left. E \left| e^{rac{-t}{ au}}
ight|$ على المعادلة التفاضلية : حل المعادلة التفاضلية

$$E(C) = \frac{1}{2} \frac{q^2}{C} = \frac{1}{2} qUc = \frac{1}{2} CUc^2$$
 الطاقة المخزنة في مكثفة :

$$i(t)$$
 = $I_0 e^{rac{-t}{ au}}$ عبارة تيار التفريغ:

