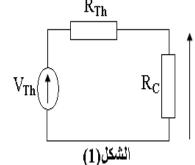
خص العلاقات الكهربائية 2تر هك			
التيار المتناوب	التيار المستمر	اسم العلاقة	
$\overrightarrow{\mathbf{U}} = \overrightarrow{\mathbf{U}}_{x} + \overrightarrow{\mathbf{U}}_{y} = \sqrt{\underline{\mathbf{U}}_{x}^{2} + \underline{\mathbf{U}}_{y}^{2}}$	U = U1+U2+U3+	قانون -* قانون الحلقات	
$\overrightarrow{I} = \overrightarrow{I_x} + \overrightarrow{I_v} = \sqrt{I_{x}^2 + I_{v}^2}$	$I = I1 + I2 + I3 + \dots$	رق كرشوف -* قانون العقد	
Ueff = Z.Ieff	U = R.I	قانون أوم	
$\ \overline{Z_R}\ = R$	$\ \overrightarrow{Z}_{R}\ = R$	الممانعة بالنسبة لمقاومة	
$\ \overline{Z}_{C}\ = 1/C\omega$	$\left\ \overline{Z_{ ext{C}}} \right\ = \infty = \left\ \overline{Z_{ ext{C}}} \right\ $ قاطعة مفتوحة	الممانعة بالنسبة لمكثفة	
$\ \overline{\mathbf{Z}}_{\mathbf{L}}^{\bullet}\ = \mathbf{L}.\boldsymbol{\omega}$	قاطعة مغلوقة $\ \overline{Z}_{\rm L}^{\dagger}\ =0$	الممانعة بالنسبة للذاتية	
-	فرق الصفحة بين التوتر و	e 14 to 30 to 30	
0	/	بالنسبة للمقاومة	
- π/2		بالنسب للمكثفة	
$\pi/2$	الممانعة المكافئة	بالنسبة للذاتية	
$\sqrt{2}$		t t etc t	
$Z_{\text{\'eq}} = \sqrt{Z_{x}^{2} + Z_{y}^{2}}$	$R_{\acute{e}q} = R_1 + R_2 + R_3 + \dots$	على التسلسل	
$Z_{x} = R_{\acute{e}q} , Z_{y} = (Z_{L\acute{e}q} - Z_{C\acute{e}q})$	1 1 1 1	على التفر ع	
$\frac{1}{Z_{\text{\'eq}}} = \sqrt{\frac{1}{R^2}} + \left(\frac{1}{Z_{\text{L\'eq}}} - \frac{1}{Z_{\text{C\'eq}}}\right)^{2^{-1}}$	$\frac{1}{R\acute{e}q} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + \cdots$	عی اسرے	
	الإستطاعات		
$S = \sqrt{P^2 + Q^2}$	Pa = Pu + Pj		
	الحمولة عبارة عن محرك		
S = U.I	Pa = U.I		
$P = S.Cos(\phi)$	Pu = E'.I		
$Q = S.Sin(\varphi)$	$Pj = rI^2$		
$Cos(\varphi) = P/S$	الحمولة عبارة عن مولد		
$Sin(\varphi) = Q/S$	Pa = E.I		
$tg(\varphi) = Q/P$	Pu = U.I		
7.11 5 NO 11	$\mathbf{P}\mathbf{j} = \mathbf{r}\mathbf{I}^2$		
معامل الإستطاعة	المردود : Pa-/Pa		
$Cos(\phi) = P/S$ $Q_L = L\omega I^2 = U^2/L\omega$	$\eta = Pu/Pa$		
$Q_{L} = L\omega I = U/L\omega$ $Q_{C} = -U^{2}.C.\omega = -I^{2}/C.\omega$			
$Q_{C} = -0 \cdot C.\omega = -1/C.\omega$ $Q_{L,C} = Q_{L} + Q_{C}$			
$QL,C - QL + QC$ $P = RI^2 = U^2/R$			
1 Iu - 0 /Iu	علاقات التوتر		
$U_C = I/C\omega$	$U_C = q/C$	بالنسبة للمكثفة (C)	
1,500	(q = I.t <= ثابت I)		
$U_{L}=L.\omega.I$	$\begin{pmatrix} \mathbf{q} - \mathbf{n} \cdot \mathbf{r} & -\mathbf{r} - 1 \\ 0 \end{pmatrix}$	بالنسبة للذاتية (L)	
L		بالنسبة المكثفة(C) و	
$U_{L,C} = U_L - U_C $	/	الذاتية(L)على التسلسل	
,	1		


$U_{R} = R.I$ $U_{max} = U_{eff} \sqrt{2}$	$egin{aligned} \mathbf{U_R} &= \mathbf{R.I} \ \mathbf{U_{max}} &= \mathbf{U_{eff}} \end{aligned}$	بالنسبة للمقاومة (R) العلاقة بين التوترات
$\begin{array}{c c} \vdots \\ u \\ \hline \\ u \\ \hline \\ \vdots \\ u_1 \\ \hline \\ u_2 \\ \hline \\ u_1 \\ \hline \\ u_2 \\ \hline \\ u_2 \\ \hline \\ u_2 \\ \hline \\ u_2 \\ \hline \\ u_3 \\ \hline \\ \hline \\ & \overline{Z_u} = \sqrt{Z_x^2 + Z_y^2} = L\omega - \frac{1}{C \cdot \omega} \\ \hline \\ & \overline{Z_u} = \sqrt{Z_x^2 + Z_y^2} = \sqrt{R^2 + (L\omega - \frac{1}{C \cdot \omega})^2} \\ u_1 = \frac{L\omega - \frac{1}{C \cdot \omega}}{\sqrt{R^2 + (L\omega - \frac{1}{C \cdot \omega})^2}} u \end{array}$	E	نظرية مجزء التوتر
$ \frac{i}{R} \xrightarrow{i_{1}} C \xrightarrow{i_{2}} L $ $ i_{3} = \frac{\left\ \overline{Z_{c}//Z_{L}}\right\ }{\left\ \overline{R//Z_{c}//Z_{L}}\right\ } i $ $ i_{2} = \frac{\left\ \overline{R//Z_{L}}\right\ }{\left\ \overline{R//Z_{c}//Z_{L}}\right\ } i $	$ \begin{array}{c c} \vdots \\ \hline \\ R_1 \\ \hline \\ R_2 \\ \hline \\ R_3 \\ \hline \\ R_3 \\ \hline \\ R_1 \\ \hline \\ R_2 \\ \hline \\ R_1 \\ \hline \\ R_2 \\ \hline \\ R_3 \\ \hline \\ R_3 \\ \hline \\ R_1 \\ \hline \\ \\ R_3 \\ \hline \\ R_1 \\ \hline \\ \\ R_2 \\ \hline \\ R_3 \\ \hline \\ \\ R_3 \\ \hline \\ \\ R_1 \\ \hline \\ \\ R_3 \\ \hline \\ \\ R_1 \\ \hline \\ \\ \\ R_2 \\ \hline \\ \\ \\ R_3 \\ \hline \\ \\ \\ \\ R_3 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	نظرية مجزء التيار

نظرية تيفنا: تحويل أي تركيب إلى تركيب بسيط جدا الشكل(1).

- : R_{Th} بلحساب *-
- 1- نقصر كل المولدات.
 - 2- ننزع الحمولة.
- 3- نحسب المقاومة المكافئة بالنظر من جهة الحمولة
- $V_{
 m Rc}$. (أي أننا نفرض أن التيار يدخل إلى التركيب من جهة الحمولة)
 - : V_{Th} بلحساب *-
 - 1- ننزع الحمولة.
 - 2- نحسب التوتر بين القطبين الذين نزعت من بينهما الحمولة.

نظرية نورتن: تحويل أي تركيب إلى تركيب بسيط جدا الشكل(2).

- : R_N بالحساب *-
- 1- نقصر كل المولدات.
 - 2- ننزع الحمولة.
- 3- نحسب المقاومة المكافئة بالنظر من جهة الحمولة
- (أي أننا نفرض أن التيار يدخل إلى التركيب من جهة الحمولة).
 - : I_N بلحساب *-
 - 1- نقصر الحمولة.
- 2- نحسب تيار التقصير I_{CC} (أي نحسب التيار المار في سلك التقصير).

 R_{Th}

 $mid I_{R_{
m N}}$ (2)الشكل

```
W = P.t = U.I.t = R.I^{2}.t
                                                               - * معادلة الطاقة الكهر بائبة
                                                         ـ* معادلة كمية الطاقة الحرارية
      Q = m.C.(\Delta T)
                                                                    -* علاقة تحويل الطاقة
       R.I^2.t = m.C.(\Delta T)
                                         Ic = \beta.I_B : (الجامع المجمع المجمع + علاقة تيار
I_B = \left(V_{BB} - V_{BE}
ight) \, / \, R_B: هي I_B = f(V_{BE}) المعادلة العامة لمستقيم الهجوم I_B = \left(V_{BB} - V_{BE}\right) \, / \, R_B

m V_{BE} = V_{BB} - R_{B} \; I_{B}: هي 
m V_{BE} = f(I_{B}) هي المعادلة العامة لمستقيم الهجوم 
m ^*
I_{\rm C} = \left( {
m V}_{
m CC} - {
m V}_{
m CE} 
ight) / {
m R}_{
m C}: هي I_{
m C} = f({
m V}_{
m CE}) المعادلة العامة لمستقيم الحمولة
      V_{CE} = V_{CC} - R_C \; I_C: هي V_{CE} = f(I_C) هي المعادلة العامة لمستقيم الهجوم V_{CE} = V_{CC} - R_C \; I_C
                                      . (Si) بالنسبة للسيليسيوم V_{BE} = 0.7V بالنسبة السيليسيوم
                                  . (Ge) بالنسبة للجر مانيوم V_{BE} = 0.35 V بالنسبة للجر
                                                       - * التوتر المتناوب ثلاثي الأطوار:
                                               - العلاقات اللحظية للتوتر ات البسيطة:
 V_1(t) = V_{1max} . Sin(\omega t)
 V_2(t) = V_{2max} .Sin(\omega t - 2\pi/3)
  V_3(t) = V_{3max} . Sin(\omega t + 2\pi/3)

    العلاقات اللحظية للتوتر ات المركبة:

  U_{12} = U_{12\text{max}}.\text{Sin}(\omega t)
  U_{23} = U_{23\text{max}}.\text{Sin}(\omega t- 2\pi/3)
  U_{31} = U_{31max}.Sin(\omega t + 2\pi/3)
                            U = V \sqrt{3}: العلاقة بين التوتر البسيط و التوتر المركب V = V \sqrt{3}
                                  - * العلاقة بين التيار في الخطو التيار في الحمولة :
                                          I : التيار في الخط .
                                       J : التيار في الحمولة .
                                    I = J: بالنسبة للإقران النجمى I = J:
                                   I = J\sqrt{3}: بالنسبة للإقر انالمثلثي يا J\sqrt{3}
                                                       - * قيمة التوتر بين قطبي الحمولة:
               . U_{charge} = V = 220V : النجمى النجمى للإقران النجمى 1
              . U_{charge} = U = 380V : بالنسبة للإقران المثلثي - 2
                                                               - * علاقات التوتر المتناوب :
           \pi = 3.14 \text{ rad}
                                       \omega = 2\pi f
                                                                  النبض :
                                                                       التردد
                                        f = 1/T
                                          T
                                                                        الدو ر
    . U_C(t) = E.(1-e^{-t/\tau}) : العلاقة اللحظية ( المعادلة الزمنية ) لشحن المكثفة : *
      . U_{C}(t) = E.e^{-t/\tau} : العلاقة اللحظية ( المعادلة الزمنية ) لتفريغ المكثفة :
                         	au = R.C: علاقة الثابت الزمنى لشحن أو لتفريغ مكثفة
                                                                 - * بالنسبة للتوتر المستمر:
                                                                 النبض:
                               \omega = 0
                                                                 التردد :
                               f = 0
                               T \longrightarrow \infty
                                                                 الدور:
                                 3
```

الوحـــدات					
رمز الوحدة	الوحدة	الرمز	الإسم		
Ω	الأوم	R	المقاومة		
Ω	الأوم	Z	الممانعة		
V	الفولت	U,V,E	التوتر		
A	الأمبير	I, i	التيار		
J	الجول	\mathbf{W}	الطاقة الكهربائية		
J	الجول	Q	كمية الطاقة الحرارية		
W	الواط	Pa	الإستطاعة الممتصة		
W	الواط	Pu	الإستطاعة المفيدة (الفعالة)		
W	المواط	Pj	الإستطاعة الضائعة		
W	الواط	P	الإستطاعة الفعالة (المفيدة)		
V.A	فولت أمبير	S	الإستطاعة الظاهرية		
V.A.r	فولت أمبير ردي أو (إرتكاسي)	Q f	الإستطاعة الردية		
Hz	الهرتز	f	التردد(التواتر)		
S	الثانية	T	الدور		
rad/S	الراديان /الثانية	ω	النبض		
S	الثانية	t	الزمن		
F	الفار اد	C	سعة المكثفة		
Н	الهنري	L	الذاتية		
S	الثانية	τ	الثابت الزمني		
C	كولوب	q	كمية الشحنة		
/	نسبة مئوية ليس له وحدة	η	المردود		
/	ليست له وحدة	$Cos(\phi)$	معامل الإستطاعة		
rad	الراديان	φ	فرق الصفحة (فرق الطور)		
kg	الكيلوغرام	m	الكتلة		
J/kg.C°	جول/الكيلوغرام الدرجة المئوية.	C	الحرارة النوعية		
C°	الدرجة المئوية	$\Delta \mathrm{T}$	الفرق في درجة الحرارة		

مضاعـــفات الوحدات

القيمة	الرمز	مضاعفات الوحدة	القيمة	الرمز	مضاعفات الوحدة
$1 = 10^0$	رمز الوحدة	الوحدة الأساسية	$1 = 10^0$	رمز الوحدة	الوحدة الأساسية
10^{-3}	m	الميلي	10^{3}	K	الكيلو
10^{-6}	μ	الميكرو	10^{6}	M	الميغا
10 ⁻⁹	n	النانو	10^{9}	G	الجيغا
10 ⁻¹²	p	البيكو			

مثال : إذا كانت الوحدة الأساسية هي الهرتز و التي رمزها هو : Hz الهرتز (Hz) ، الميغاهرتز (Hz) ، الميغاهرتز (Hz) ، الميغاهرتز (Hz) ، الميغاهرتز (Hz) ، الميكو هرتز (Hz) ، الميكر و هرتز (Hz) ، النانو هرتز (Hz) ، النيكو هرتز (Hz) . Hz0 . Hz1 . Hz2 . Hz3 . Hz4 . Hz4 . Hz5 . Hz6 . Hz6 . Hz6 . Hz6 . Hz7 . Hz8 . Hz9 . Hz9