<u>الإرسال3</u>

٢ - تقدم التفاعل المنمذج لتحول كيميائي

مقاربة اولى لمفهوم التقدم لتحول الكيميائي

يريد ميكانيكي أن يجهز عجلات الدراجات بمحابس التثبيت ، فوجد ١٢محبس لتجهيز ١٣ عجلة .

فيجهز العجلة تلو الاخرى ، ويكرر العملية x مرة . فاذا اعتبرنا عدد العجلات فيجهز العجلة تلو الاخرى ، وعدد المحابس $n_2=12$ ، سجلنا الملاحظات في الجدول التالي :

	X	عدد العجلات n_1	n ₂ عدد المحابس
الحالة		13	12
الابتدائية			
	1	13 - 1 = 12	12 - 2 = 10
	2	13 - 2 = 11	12 - 2x2 = 8
	3	13 - 3 = 10	12 - 3x2 = 6
	4	13 - 4 = 9	12 - 4x2 = 4
	5	13 - 5 = 8	12 - 5x2 = 2
الحالة	6	13 - 6 = 7	12 - 6x2 = 0
النهائية			

نستطيع تحديد الحالة النهائية بـ x=6 عجلات مجهزة بالمحابس ، و x عجلات غير مجهزة . العملية توقفت بسبب نقص في المحابس بعد تكرارها x مرة . نسمي x بـ التقدم l'avancement ، فنسجل الملاحظات في الجدول التالي :

	avancement x	n ₁ عجلة	n ₂ محبس	n عملية
الحالة الابتدائية	0	13	12	0
أثناء التحول .	X	13 - x	12 - 2 x	X

لنبحث عن الحالة النهائية.

كمية مادة المتفاعلات تتناقص حتى تنعدم إحداها .

 $13-x=0 \Rightarrow x=13$: Use list of the second of

اذا انعدم عدد المحابس : $x = 0 \Rightarrow x = 6$ ، ما هي القيمة التي تحقق المعادلتين ؟

القيمة الأعظمية لـ x حصلنا عليها ، عندما انعدم عدد المحابس ، فنعطيه اسم Reactif limitant المتفاعل المحد

و نعين التقدم الأعظمى $x_{\rm max}=6$. ونكمل الجدول السابق

	X التقدم	n ₁ عجلة	n ₂ محبس	n عملية
الحالة الابتدائية	0	13	12	0
أثناء التحول	X	13 - x	12 - 2 x	X
الحالة النهائية	$x_{\text{max}} = 6$	7	0	6

<u>الإرسال3</u>

أعد التجربة عزيزي التلميذ بمعطيات جديدة (عدد العجلات $n_1=6$ ، وعدد المحابس $n_2=12$ ، لاشك أنك تتوصل الى الجدول التالي :

	X	n_1	n_2
الحالة		6	12
الابتدائية,			
	1	6 - 1 = 5	12 - 2 = 10
	2	6 - 2 = 4	12 - 2x2 = 8
	3	6 - 3 = 3	12 - 3x2 = 6
	4	6 - 4 = 2	12 - 4x2 = 4
	5	6 - 5 = 1	12 - 5x2 = 2
الحالة النهائية	6	6 - 6 = 0	12 - 6x2 = 0

ونستطيع تقديم النتائج بشكل آخر:

	التقدم X	\mathbf{n}_1	n_2	n
الحالة	0	6	12	0
الابتدائية				
	X	6 - x	12 - 2 x	X
الحالة	$x_{max} = 6$	0	0	6
النهائية				

جميع العجلات جهزت بالمحابس ، ولم يبق شيء من المتفاعلات ، فنقول أن العملية تحققت في الشروط الستكيومترية stoechiometriques .

نعود الآن إلى تقدم التحول الكيميائي .

من أجل متابعة تحول كيميائي لجملة على المستوى العياني من الحالة الابتدائية الى الحالة النهائية ، يقترح الاتحاد الدولي للكيمياء البحتة و التطبيقية IUPAC وسيلة تدعى تقدم التفاعل X ، وسندرس في هذا المستوى التفاعلات التامة و السريعة فقط ، أي لا نتعرض لحالة التوازن الكيميائي .

اذن التقدم X يعبر عن تطور الجملة أثناء التحول الكيميائي ، و يتوقف هذا التحول عندما يختفي أحد المتفاعلات ، ويسمى في هذه الحالة المتفاعل المختفي بـ المتفاعل المحد Reactif Limitant .

- وحدة التقدم: يعبر عن التقدم ب المول وهي حدة كمية المادة .

- جدول التقدم: عبارة عن جدول وصفي للجملة ، يوضح حصيلة المادة خلال تحول كيميائي من الحالة البتدائية الى الحالة النهائية .

مثال:

ا H_2 انطلاقا من غازتنائي الهيدروجدين H_2 (H_2 مول) و غاز ثنائي الأكسجين H_2 (H_3 مول) ، يمكن الحصول على الماء H_4 ، معادلة التفاعل المنمذج للتحول هي :

 $2\;H_{2~(g)}\;+O_{2~(g)}\;\to\;2\;H_2O$

- على المستوى المجهري : لنفترض أن التفاعل حدث مرة واحدة : يختفي جزيء واحد من O_{2} و وجزيئين من O_{2} و واحد من O

– على المستوى العياني : لنفترض أن التفاعل حدث N_A مرة حيث N_A هو عدد آفوقادرو ، اذن يختفي واحد مول من O_2 ($_{\rm g}$ مع ٢ مول من H_2 0 ليتشكل ٢ مول من H_2 0 .

مع 2x مول من \mathbf{O}_2 مع \mathbf{X} مول من \mathbf{x} مول من \mathbf{x} مول من \mathbf{A} مول من \mathbf{A}

نسمي x (مقدرة بالمول) في أية مرحلة من مراحل التحول ب تقدم التفاعل . يمكن تقديم حصيلة المادة خلال هذا التحول ، بالجدول التالى :

معادلة التفاعل	O_2	+ 2 H ₂	 2H ₂ O
كمية المادة في الحالة	٣	٦	•
الابتدائية t=0			
كمية المادة أثناء التحول	۳– x	6-2x	2 x
			,

لندرس تطور الجملة الموضحة في الجدول أعلاه ولنعين تقدم التفاعل x :

 $3- x = 0 \Rightarrow x = 3 \text{ mol}$

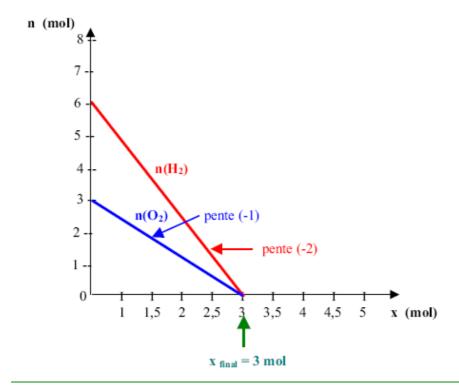
اذا اختفى O_2 أولا يكون :

 $6-2 x=0 \Rightarrow x=3$ mol

واذا اختفى H_2 أو لا يكون :

الملاحظ أن في الحالتين x=3mol ، اذن غازي O_2 ، H_2 ، اذن x=3mol ، اذن عان في الحالة النهائية للتحول هي :

$n(O_2)$	$n(H_2)$	n(H ₂ O)
	٣٨	


ونسمي في هذه الحالة تقدم التفاعل x بـ تقدم التفاعل الأعظمي ونرمز له بالرمز $x_{\rm fin}$: $x_{\rm fin}$.

$$x_{\max} = x_{fin} = 3mol$$

لنرسم المنحنيين:

$$n_{0_2} = 3 - x$$

$$n_{h_2} = 6 - 2x$$

نتيجة : في حالة استعمال المعاملات الستيكيومترية ، يكون التقدم X أعظمي . y لنحقق نفس التجربة ، لكن ليس بمعاملات ستيكيومترية حسب الجدول التالي وهي الحالة المدروسة في تطور جملة كيميائية .

المعادلة الكيميائية	O ₂ +	→ 2H ₂	2 H ₂ O
كمية المادة في الحالة			
الابتدائية t = 0	٧	٥	•
كمية المادة أثناء التحول	7- X	5-2 X	2 X

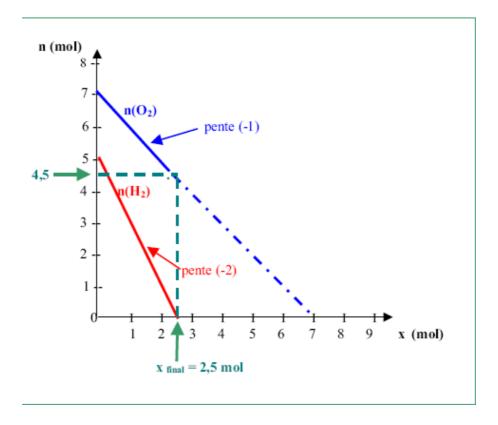
إذا اختفى О2 أولا لدينا:

 $7-X=0 \Rightarrow X=7 \text{ mol}$

إذا اختفى H₂ أولا لدينا:

 $5-2X=0 \Rightarrow X=2.5 \text{ mol}$

في هذه الحالة ، يختفي ${
m H}_2$ أو لا، لأن (${
m X}=2.5~{
m mol}$) ، وهو المتفاعل الذي يحد من تطور التحول و يسمى بـ المتفاعل المحد .


ويمثل أيضا التقدم الأعظمي الذي يساوي التقدم النهائي:

 $X_{max} = X_{fin} = 2.5 \text{ mol}$

وتكون الحالة النهائية:

n(O ₂)	n(H ₂)	n(H ₂ O)
٤,٥	•	٥

$$n_{O_2} = 7 - x$$
: ننرسم المنحنيين
$$n_{H_2} = 5 - 2x$$

نتيجة : تكون التفاعلات بمعاملات ليست استكيومترية بـ متفاعل محد .

تطبيق: تطور جملة كيميائية خلال تحول كيميائي

الوسائل: ٣٠ كؤوس (300 mL)، مخبار مدرج، دوق مخروطي، قمع ورق شفاف.

المحاليل: - محلول كلور الحديد الثلاثي (Fe³⁺+3Cl⁻) حيث

 $[Fe^{3+}] = 0.1 \text{ mol.L}^{-1}$

 $[OH^-] = 1,5 \text{ mol.L}^{-1}$ حيث $(Na^+ + OH^-)$ حيث - محلول هيدروكسيد الصوديوم - ماء مقطر .

الخطوات التجريبية:

- نضع في كل كأس 50 mL من محلول من محلول كلور الحديد الثلاثي.
- نضيف محلول هيدروكسيد الصوديوم إلى الكؤوس الثلاثة على الترتيب .15 mL, 10 mL, 5 mL

١ – أكمل الجدول التالى:

مظهر	حجم محول	حجم المحلول	رقم
الراسب	Na ⁺ +OH ⁻	Fe ³⁺ +3Cl ⁻	الكأس
	٥	٥.	١
	١.	٥.	۲
	10	٥.	٣

الارسال3

$$Y-$$
 صف الحالة الابتدائية والحالة النهائية للجملة الكيميائية في كل كأس $n_{0_{\mathrm{OH}^{-}}}$ (المظهر، $n_{0_{\mathrm{Fe}^{+3}}}$

٣- أكتب معادلة التفاعل المنمذج للتحول الكيميائي الذي يحدث في كل كأس مع تطبيق مبدأ إنحفاظ العنصر ومبدأ إنحفاظ الشحنة.

، $n_{{
m Fe}+3}=f(x)$ عين جدول التقدم الكيميائي في كل كأس و أرسم البيانين - ٤ $\cdot n_{OH} = g(x)$

<u>الإجابة:</u>

كمية المادة المحتواة في كل كأس و مظهرها في الحالة الابتدائية :

مظهر الراسب	$n_{Fe^{3+}}$	$n_{_{OH}}$ -	رقم الكأس
صدئي	5×10 ⁻³	7.5×10^{-3}	الأول
صدئي	5×10 ⁻³	15×10 ⁻³	الثاني
صدئي	5×10 ⁻³	22.5×10 ⁻³	الثالث

أما في الحالة النهائية فيكون محتوى كل كأس:

+ (الناتج) $Fe(OH)_3$ من الراسب X mol- + (OH^- ، Fe^{3+}) كميات من الأفراد الكيميائية المتبقية الأفراد الكيميائية التي لم تتدخل في التفاعل

٢ - معادلة التفاعل المنمذج للتحول في كل كأس:

 $Fe^{3+} + 3OH^{-} \rightarrow Fe(OH)_{2}$

أما شوارد الكلور $^-$ Cl ، وشوارد الصوديوم $^+$ Na فتبقى فى المحلول ، يمكن الكشف عن وجود Cl ، باضافة كمية من محلول نترات الفضة Cl ٣- بعد ترشيح محتوى كل كأس نحصل على راسب هيدروكسيد الحديد الثلاثي • $Fe(OH)_3$

الكأس الأولى

أ- جدول التقدم: x يمثل تقدم التفاعل.

معادلة التفاعل	$Fe^{+3} + 3OH^- \rightarrow Fe(OH)_3$			
الحالة	5.10-3	7.5×10 ⁻³	0	
الابتدائية	3.10	7.5×10		
الحالة أثناء	5 . 10 ⁻³ - x	$7.5 \times 10^{-3} - 3x$	X	
التطور	3.10 X		Λ	
الحالة النهائية	$5.10^{-3} - x_f$	$7.5 \times 10^{-3} - 3x_{\rm f}$	X_f	

إذا اختفى -OH أولا:

$$7.5 \times 10^{-3} - 3X_f = 0 \Rightarrow X_f = 2.5 \times 10^{-3} mol$$

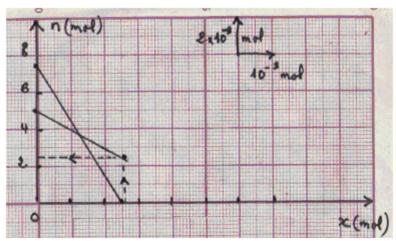
إذا اختفى -Fe+3 أولا:

$$5 \times 10^{-3} - X_f = 0 \Rightarrow X_f = 5 \times 10^{-3} mol$$

ومنه المتفاعل المحد هو الأقل في عدد المولات أي OH ، اذن :

 $X_f = 2.5 \times 10^{-3} mol$

 $n_{OH}^- = g(x)$ ، $n_{Fe+3} = f(x)$ ب- رسم البیانین


في الكأس الأولى:

كل من المعادلتين عبارة عن دالة خطية من الدرجة الأولى في المتغير X (بيانها خط مستقيم) ، من الشكل :

: حيث ، Y= m + n X

n يمثل معامل توجيه المستقيم ويكون دوما سالب .

m يمثل كمية مادة المتفاعل الابتدائية (قبل التحول) .

في الكأس الأولى:

الارسال3

$$n_{\text{Fe3+}} = n_{0\text{Fe3+}} - x = 5.10^{-3} - x$$

 $n_{OH-} = n_{0OH-} - 3x = 7.5 \cdot 10^{-3} - 3x$

جــ تحليل نتيجة البيانين:

 $(7,5.10^{-3}$ ، $5.10^{-3})$ تتناقص كمية مادة كل متفاعل من قيمتيهما الابتدائية لشوارد OH- . Fe+3 على الترتيب الى أن تنعدم كمية مادة OH- ، فيتوقف التحول و تصبح عنده كمية مادة ${
m Fe}^{+3}$ ، ${
m Fe}^{-3}$ ، و التى تساوى في آن وإحد المتفاعلة.

إذن OH حد من مواصلة التحول لذلك يسمى بالمتفاعل المحد .

و إذا قمنا بحساب ميل كل بيان نجد أن :

$$\frac{\delta n}{\delta X} = \frac{7.5 \times 10^{-3} - 0}{0 - 2.5 \times 10^{-3}} = -3$$

X ويمثل $(-\pi)$ ميل البيان $g(\mathbf{x}) = g(\mathbf{x})$ ويمثل في آن واحد معامل التقدم للتفاعل في المعادلة.

 $: n_{Fe+3} = f(x)$ نحسب ميل البيان الثانى

$$\frac{\delta n}{\delta X} = \frac{5.10^{-3} - 2.5 \times 10^{-3}}{0 - 2.5 \times 10^{-3}} = -1$$

. ويمثل (1-) معامل التقدم X للتفاعل في المعادلة

و الاشارة (-) دلالة على تناقص كمية مادة المتفاعلات أثناء التحول أثناء زيادة التقدم X للتفاعل .

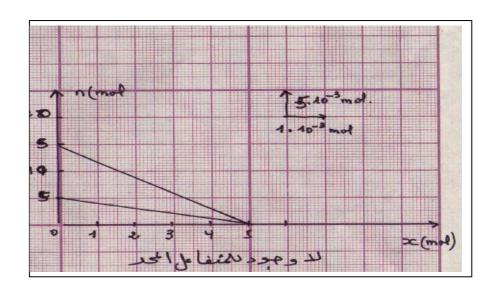
٢/ الكأس الثانية:

X أ- جدول التقدم X للتفاعل X

الارسال3

معادلة التفاعل	$Fe^{+3} + 3OH^{-} \rightarrow Fe(OH)_{3}$				
الحالة الابتدائية	5.10^{-3} 15×10^{-3}				
الحالة أثناء التطور	5 . 10 ⁻³ - x	15×10^{-3} - 3x	X		
الحالة النهائية	5.10^{-3} - $x_{\rm f}$	$15 \times 10^{-3} - 3x_f$	X_{f}		

الملاحظ أن المتفاعلان يختفيان في آن واحد:


$$5 \times 10^{-3} - X_f = 0 \Rightarrow X_f = 5 \times 10^{-3} mol$$

 $15.10^{-3} - 3X_f = 0 \Rightarrow X_f = 5 \times 10^{-3} mol$

إذن المتفاعلات في حالة المعاملات الستكيومترية ، وتكون الحالة النهائية :

$n_{\mathrm{Fe}}^{}^{+3}}$	n _{OH}	n _{Fe(OH)3}
•	•	5.10^{-3}

ليس هناك متفاعل محد .

:
$$n_{Fe+3} = f(x)$$
 ، $n_{OH}^- = g(x)$ ب- رسم البیانین

في الكأس الثانية: $n_{Fe3+} = 5.10^{-3} - x$ $n_{OH-} = 15.10^{-3} - 3x$

جــ - تحليل نتيجة البيانين:

بيانها عبارة عن مستقيم ميله سالب ، فهو يتناقص $n_{\rm Fe+3}=f(x)$ من القيمة 5.10^{-3} مول الى أن تختفي كمية المتفاعل .و بنفس الطريقة المتبعة في حساب الميل يكون :

المولات (-) تدل على تناقص عدد المولات $\frac{\delta n}{\delta X} = \frac{5.10^{-3}-0}{0-5.10^{-3}} = -1$ مع تزاید التقدم فی التفاعل (x) .

 $n_{OH} = g(x)$ بيانها عبارة عن خط مستقيم ميله سالب ، اذ تتناقص كمية مادة المتفاعل زيادة التقدم في التفاعل (x) ، من القيمة 15.10^{-3} مول الى أن تختفي تماما عند نهاية التحول .

ميل المستقيم:

$$\frac{\delta n}{\delta X} = \frac{15.10^{-3} - 0}{0 - 5.10^{-3}} = -3$$

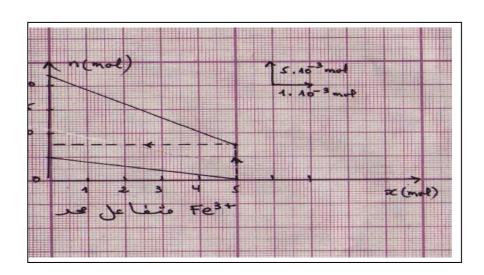
الإشارة (-) تدل على تناقص عدد المولات مع تزايد التقدم في التفاعل (x) .

و التفاعل يتم بالمعاملات الستكيومترية ، في هذه الحالة .

٣/ الكأس الثالثة:

أ-جدول التقدم (x) للتفاعل:

معادلة التفاعل	$Fe^{+3} + 3OH^- \rightarrow Fe(OH)_3$						
الحالة الابتدائية	5.10-3	5.10^{-3} 22.5×10^{-3}					
الحالة أثناء التطور	5 . 10 ⁻³ - x	22.5×10^{-3} - 3x	X				
			$\mathbf{x}_{\mathbf{f}}$				


إذا اختفى OH أولا:

$$22.5 \times 10^{-3} - 3X_f = 0 \Rightarrow X_f = 7.5 \times 10^{-3} mol$$

وإذا اختفى Fe^{+3} أو لا يكون :

$$X_f = 5.10^{-3} mol$$

. يختفى ${\rm Fe}^{+3}$ أو لا ، فيتوقف التحول ، فهو المتفاعل المحد

في الكأس الثالثة:
$$n_{Fe3+} = 5.10^{-3} - x$$

$$n_{OH-} = 22,5.10^{-3} - 3x$$

تحليل نتائج البيانين:

بيانها عبارة عن مستقيم ميله سالب ، فهو يتناقص من ${\bf n}_{{\rm Fe}+3}={\bf f}({\bf x})$ القيمة 5.10^{-3} مول الى أن تختفي كمية المتفاعل .و بنفس الطريقة المتبعة في حساب الميل يكون :

الإشارة (-) تدل على تناقص عدد المولات مع تزايد $\frac{\delta n}{\delta X} = \frac{5.10^{-3}-0}{0-5.10^{-3}} = -1$ التقدم في التفاعل (x)

مادة مادة $n_{OH} = g(\mathbf{x})$ بيانها عبارة عن خط مستقيم ميله سالب ، اذ تتناقص كمية مادة المتفاعل مع زيادة التقدم في التفاعل (\mathbf{x}) ، من القيمة 22.5×10^{-3} مول الى أن تبقى 7.5×10^{-3} مول عند نهاية التحول .

ميل المستقيم:

$$\frac{\delta n}{\delta X} = \frac{22.5 \times 10^{-3} - 7.5 \times 10^{-3}}{0 - 5 \times 10^{-3}} = -3$$

وتكون الحالة النهائية:

n _{Fe} ⁺³	n _{OH}	n _{Fe(OH)3}
•	٧,٥×10 ⁻³	5.10 ⁻³

 $n_{OH} = g(x)$ ، $n_{Fe+3} = f(x)$ ملاحظة : من الملاحظ أن ميل البيانين يبقى ثابتا في الحالات الثلاث ، والقيمة المطلقة لكل منها تمثل معامل التناسب (المعامل الستكيومتري).

تطبيق - ٧ -

مراقبة تحول كيميائي بواسطة البالون (مقاربة نوعية ثم كمية)

- الهدف : التأكيد على أن التحول الكيميائي يمكن أن يحدث حتى ولو كانت المتفاعلات ليست في الشروط الستكيومترية . متابعة تأثير كمية المتفاعلات على التقدم الأعظمي.

تعيين المتفاعل المحد . تعيين حصيلة المادة باستعمال جدول التقدم الوصفي لتطور الجملة . مقارنة النتائج التجريبية بالنظرية .

> I - المقاربة النوعية: نعود من جديد الى الجملة (حمض الخل و هيدروجينوكربونات الصوديوم) ، و نعالج حالتين:

الحالة الاولى:

امن حمض الخل 6^0 ، يحتوى $100 \mathrm{ml}$ من الماء على $6 \mathrm{g}$ من $10 \mathrm{ml}$ $H_2O_{(1)}$ ، HA(aq) ب ونرمز له ب ونرمز النقى . ونرمز 5g من هيدوجينوكربونات الصوديوم الصلبة .

الملاحظات:

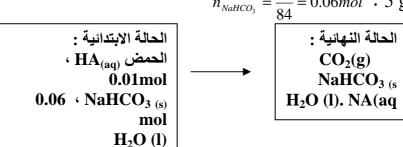
- حدوث فوران: ما هي طبيعة الغاز المتشكل؟

 $\mathrm{CO}_2(\mathrm{g})$ غاز هو غاز . يتعكر الناتج اذن هو غاز

- يتبقى قليلا من NaHCO_{3 (s)} الصلبة في الحالة النهائية .
- وباستعمال ورق الـ pH: نكتشف أن الحمض قد اختفى .

ما هي الأنواع الكيميائية المتشكلة ؟

معادلة التفاعل بتطبيق انحفاظ العنصر:

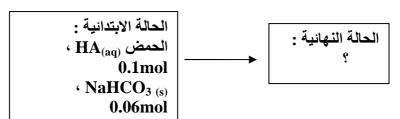

 $NaHCO_3(s) + HA(aq) \longrightarrow CO_2(g) + NaA(aq) + H_2O(l)$

كمية المادة في الحالة الابتدائية:

$$n_{HA} = \frac{0.6}{60} = 0.01 mol$$

الكتلة المولية لهيدروجينوكربونات الصوديوم هي: 1-84 g.mol ، ناخذ منها

 $n_{NaHCO_3} = \frac{5}{84} = 0.06mol \cdot 5 \text{ g}$


الجدول الوصفى للجملة أثناء التحول:

	$NaHCO_3(s) + HA(aq) \longrightarrow CO_2(g) + NaA(aq) + H_2O(l)$					
الحالة	٠,٠٦	٠,٠١	0	0	*	
الابتدائ						
ية						
(mol)						
الحالة	*	•	*	*	*	
النهائية						
(mol)						

. HA(aq) هو المتفاعل المحد

*تعني وجود النوع الكيميائي.

الحالة الثانية :100ml من حمض الخل ، 5g من هيدروجينوكربونات الصوديوم.

نفس الملاحظات السابقة ما عدا أن:

ورق الـ pH ، يكشف عن بقاء كمية من الحمض ، في الحالة النهائية . كمية المادة في الحالة الابتدائية:

$$n_{HA} = \frac{6}{60} = 0.1 mol$$

$$n_{NaHCO_3} = \frac{5}{84} = 0.06mol$$

الحالة النهائية: $CO_2(g)$ NaHCO_{3 (s} \cdot H₂O (l) NaA(aq)

الجدول الوصفى للجملة:

	$NaHCO_3(s) + HA(aq) \longrightarrow CO_2(g) + NaA(aq) + H_2O(l)$				
الحالة	٠,٠٦	٠,١	0	0	*
الابتدائية					
(mol)					
الحالة	•	*	*	*	*
النهائية					
(mol)					

- . المحد NaHCO $_{3\ (s)}$
- * تعني وجود الانواع الكيميائية .

∏ – المقاربة الكمية:

التجربة الاولى:

<u>الإرسال3</u>

الحالة الابتدائية

كمية مادة الحمض: 0.01mol

كمية مادة هيدروجينوكربونات الصوديوم: 0.06mol

الحالة النهائية

كمية الحمض: mol يختفى نهائيا .

كمية CO_2 النهائية : من قياس قطر البالون تجريبيا ، يمكن الوصول الى أن كمية مادة الغاز هي : $0.009 \, \mathrm{mol}$.

	т ·				
	$O_3(s) + HA(aq) \longrightarrow CO_2(g) + NaA(aq) + H_2O(l)$				
الحالة	٠,٠٦	٠,٠١			*
الابتدائية					
mol					
الحالة	*	•	*,**	*	*
النهائية			٩		
mol					
أثناء	0.06-x	0.01-x	X	X	*
التحول					
mol					

: ومنه تصبح الحالة النهائية $0.01-X_{final}=0 \Rightarrow X_{final}=0.01mol$

الحالة النهائية mol	٠,٠٥	•	٠,٠١	٠,٠١	*
---------------------	------	---	------	------	---

وتظهر هنا مطابقة النتائج النظرية بالتجريبية .

اثبات المعاملات الستكيومترية : من أجل $NaHCO_3$ (s) أبات المعاملات الستكيومترية : من أجل CO_2 فان لهما نفس المعاملات (متساويان) لان كمية CO_2 الناتج تساوي كمية CO_3 المختفى .