2. الدالة الأسية

الكفاءات المستهدفة

- ◄ تعريف الدالة الأسية.
- ◄ معرفة خواص الدالة الأسية .
- ◄ استعمال حاسبة لحساب قيم دوال أسية.
 - حساب نهایات نتضمن دوال أسیة.
 - $\exp^{\circ u}$ در اسة دوال من الشكل \checkmark

تصميم الدرس

 $x \mapsto \exp(x)$ آتجاه التغير – إشارة $x \mapsto \exp(x)$.I

II. خواص جبرية

 $x \mapsto \exp(x)$ دراسة الدالة الأسية.

expou دراسة الدالة. IV

۷. ملخص

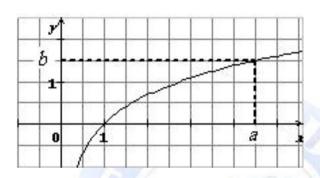
VI. توظيف المعارف (تمارين + حلول وإرشادات)

VII. تقويم ذاتي (اختيار من متعدد + صحيح أم خاطئ)

VIII. استعد للبكالوريا (مسألة محلولة مع سلّم التنقيط)

$: x \mapsto \exp(x)$ آ.تعریف – اتجاه التغیر – إشارة

نشاط



الدالة المستمرة و مترايدة تماما على مترايدة تماما على
$$0;+\infty$$
 [و لدينا: $\infty-\infty$ المالية $0;+\infty$ و $\infty+\infty$ و $\infty+\infty$

 \mathbb{R} من b عدد حقیقی a من b من a عدد حقیقی a من a یو جد عدد حقیقی و حید a من a من a عدد حقیقی و حید a من a

بوضع $a = \exp(b)$ بوضع $a = \exp(b)$

تعريف: تسمى هذه الدالة " الدالة الأسية " و نرمز إليها بالرمز " exp ".

 \mathbb{R} لدينا إذن: من أجل كل a من a من a لدينا إذن: من أجل كل b من

$$a = \exp(b)$$
 يعني $\ln(a) = b$

1) أ) أحسب الأعداد التالية: (exp(2) ، exp(1) ، exp(0) أياسب الأعداد التالية:

$$\exp(-2) = \frac{1}{\exp(2)}$$
 بين أن $\exp(-2)$

 $\left(O;\overrightarrow{i},\overrightarrow{j}\right)$ نعتبر في مستو منسوب إلى معلم متعامد و متجانس (2

ا " و" exp و" الممثلين على التوالي للدالتين (C') و (C') و المنحنيين $M'_1(y;x)$ و $M_1(x;y)$ النقطتين أ) ماذا يمكن القول عن النقطتين

حيث ٧، ٨ عددان حقيقيان.

ب) b عدد حقیقی و a عدد حقیقی موجب تماما بین أن b

النقطة M(a;b) تنتمي إلى المنحني (C') إذا وفقط إذا كانت

M'(b;a) النقطة M'(b;a) تتتمى المنحنى

(C') و (C) و أينسبة للمنحنيين

 $\cdot \left(O; \vec{i}, \vec{j}\right)$ ج $\cdot \left(C'; \vec{i}, \vec{j}\right)$ أرسم المنحني المنحني ثم المنحني أرسم المنحني أرسم المنحني

3) خمن اتجاه تغير الدالة " exp " على ... (3

حل

(1

 $\exp(0) = 1$ معناه y = 1 أي y = 1 و منه $\exp(0) = y$. (أ

 $\exp(1) = e$ و منه y = e و $\exp(1) = y$.

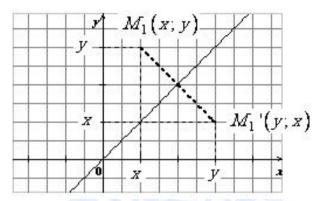
 $\exp(2) = e^2$ و منه $y = e^2$ أي $y = \ln e^2$

 $\ln\left(\frac{1}{y}\right) = 2$ معناه y = 2 أي $\exp(-2) = y$ معناه $\exp(-2) = y$

$$\exp(-2) = \frac{1}{\exp(2)}$$
 ومنه $y = \frac{1}{\exp(2)}$ أي $y = \exp(2)$

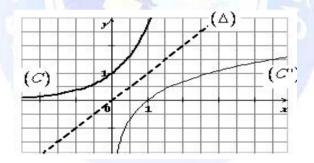
(2

و (Δ) متناظرتان بالنسبة إلى المستقيم (Y;X) و $M_1(X;Y)$ الذي $M_1(X;Y)$ معادلته $M_1(X;Y)$



 $M(a;b)\in (C')$ ب $a=\exp(b)$ أي $b=\ln a$ معناه $M(a,b)\in (C')$ (ب نستنتج أن (C)هو نظير (C')بالنسبة إلى المستقيم (C) الذي معادلته y=x

ج) إنشاء (C) و (C') في نفس المعلم.



- y=a معناه $\ln(a)=\ln(y)$ معناه $\exp[\ln(a)]=y$. (2 $\exp[\ln(a)]=a$
- y=b ومعناه $\exp(b)=\exp(y)$ معناه $\ln[\exp(b)]=y$. $\ln[\exp(b)]=b$ إذن
- 3) مخمنة: الدالة exp مترايدة تماما على \(انظر التمثيل البياني).

تعریف

الدالة الأسية التي نرمز لها بالرمز " \exp " هي الدالة المعرفة على y و التي ترفق بكل x من x العدد الحقيقي الموجب تماما x حيث x - x العدد الدقيقي الموجب تماما x

 $y = \exp(x)$ ، $]0; +\infty[$ من أجل كل x من أجل كل x من أجل كل $x = \ln(y)$ يعني

e^x الترميز

- $\exp(x)$ و نرمز اصطلاحا، من أجل كل عدد حقيقي x ، إلى e^x بالرمز e^x
- ونكتب، من أجل كل عدد حقيقي $\exp(x) = exp(x) = exp(x)$ ونقرأ الرمز e^x : " أسية e^x ".

خاصية

$\ln(e^n) = n$ ، n من أجل كل عدد صحيح نسبي

برهان

 $\ln\left(e^n\right)=n\ln\left(e\right)=n$ من أجل كل عدد صحيح نسبي n لدينا: $\exp\left(n\right)=e^n$ وذلك من أجل كل نستنتج إذن حسب التعريف أعلاه أنّ $\exp\left(n\right)=e^n$ عدد صحيح نسبي n .

خواص للدالة الأسية

من التعريف و باستعمال الترميز e^{x} نستنج الخواص التالية:

- $e^x > 0$ ، \mathbb{R} من أجل كل x من (1)
- $y=e^x$ ، $]0;+\infty[$ من أجل كل x من \mathbb{R} و من أجل كل x من \mathbb{R} من أجل كل $x=\ln(y)$ يعني
 - $\ln(e^x) = x$ ، \mathbb{R} من أجل كل x من أجل (3)
 - $e^{\ln(x)} = X$ ، $]0; +\infty[$ من أجل كل X من أجل (4)

أمثلة

$$e^{1} = e$$
 إذن $\ln(e) = 1$ $e^{0} = 1$ إذن $\ln(1) = 0$

خواص أخرى

من أجل كل عددين حقيقيين a و b لدينا:

- \cdot a=b يعنى $e^a=e^b$
- \cdot a < b يعني $e^a < e^b$

برهان

$$\cdot a = b$$
 يعني $\ln\left(e^a\right) = \ln\left(e^b\right)$ يعني $e^a = e^b$ $\cdot a < b$ يعني $\ln\left(e^a\right) < \ln\left(e^b\right)$ يعني $e^a < e^b$

مبرهنة

الدالة الأسية متزايدة تماما على ₪.

ملاحظة: هذه المبر هنة هي نتيجة مباشرة للخاصية السابقة ملاحظة: هذه المبر هنة هي نتيجة مباشرة للخاصية السابقة المبرية ا

تطبيق1

حل المعادلة و المتراجحة التاليتين:

$$e^{5x+3} > e^{3x-1}$$
 (2) $e^{x^2+3x-3} = e^{2x-1}$ (1)

حل

$$u(x) = v(x)$$
 تعني $e^{u(x)} = e^{v(x)}$ طریقة: $e^{u(x)} > e^{v(x)}$

(1) تعني 1-3x-3=2x-3 أي 1-3x-3=2x-3 و لهذه المعادلة الأخيرة حلان هما 1 و 2-.

(2) تعني
$$3x - 1 > 3x - 1$$
 أي $5x + 3 > 3x - 1$ أي $5x + 3 > 3x - 1$ أي $S =]-2; +\infty[$ هي إذن $S =]-2; +\infty[$

تطبيق2

حل المعادلة و المتر اجحتين التالية:

جميع الحقوق محفوظة (C)

$$e^{x+2} \ge 3$$
 (3) $e^{x+2} \ge -5$ (2) $e^{2x-1} = 3$ (1)

حل

$$u(x) = \ln(\lambda)$$
 معناه $\lambda > 0$ حیث $e^{u(x)} = \lambda$ طریقة: $u(x) \ge \ln(\lambda)$ معناه $\lambda > 0$ حیث $e^{u(x)} \ge \lambda$

•
$$x = \frac{1 + \ln 3}{2}$$
 أي $2x - 1 = \ln 3$ تعني (1)

• من أجل كل x من $\mathbb{R}^{x+2}>0$ و منه $e^{x+2}>0$ مجموعة حلول المتراجحة (2) هي إذن $S=\mathbb{R}$

تطبيق3

حل المعادلة و المتر اجحة التاليتين:

$$\ln(2x-1) \le 2$$
 (2) $\ln(2x-1) = 2$ (1)

حل

طريقة

• لحل المعادلة $\lambda = \ln \left[u(x) \right] = \lambda$ نتبع الخطوات التالية: $\frac{1}{2} \log u$ نتبع الخطوات التالية: $\frac{1}{2} \log u$ من أجلها الدالة u معرفة.

 D_2 ولتكن u(x)>0 مجموعة المتراجحة مع المتراجعة مع المتراجحة مع المتراجعة مع ا

 $D=D_1\cap D_2$ حيث D عين المجموعة D دين $U(x)=e^{\lambda}$ المعادلة D المجموعة D

- لحل المتراجحة $\lambda \leq \ln \left[u(x) \right] \leq \lambda$ نتبع نفس الخطوات الأربعة السابقة $u(x) \leq e^{\lambda}$ مع تعديل في الخطوة الرابعة حيث نقوم بحل المتراجحة $u(x) = e^{\lambda}$ بدل المعادلة $u(x) = e^{\lambda}$
 - $\ln(2x-1)=2$ (1) المعادلة نقوم الآن بحل المعادلة

$$D_1 = \mathbb{R}$$
 —

 $x>\frac{1}{2}$ أي 2x-1>0 أي D_2 http2/www.onefd.edu.dz

$$D_2 = \left| \frac{1}{2}; +\infty \right|$$
 e ais

.
$$D=D_1\cap D_2=\mathbb{R}\cap \left]\frac{1}{2};+\infty\right[=\left]\frac{1}{2};+\infty\right[$$
 ومنه ____

$$2x-1=e^2$$
 نحل الآن المعادلة _

$$x = \frac{e^2 + 1}{2}$$
 من أجل كل x من (1) نعني (1) نعني أجل كل (1)

$$\frac{e^2+1}{2}$$
 إذن المعادلة (1) تقبل حلا وحيدا هو

$$\ln(2x-1) \le 2$$
 (2) in larger l

المراحل الثلاثة الأولى هي نفسها بالنسبة للمعادلة لذلك فإن

$$D = D_1 \cap D_2 = \mathbb{R} \cap \left[\frac{1}{2}; +\infty \right] = \left[\frac{1}{2}; +\infty \right]$$

$$x \le \frac{e^2 + 1}{2}$$
 ي أي $2x - 1 \le e^2$ يتعني (2) من x من أجل كل x من أجل كل x من أجل كا

$$S = \left[\frac{1}{2}, \frac{e^2 + 1}{2} \right]$$
 الحلول المتراجحة (2) هي إذن

تطبيق4

- \cdot r متتالية حسابية أساسها (u_n)
- . $q \neq 0$ و q متتالية هندسية أساسها

$$\cdot eta_n = \ln \left| v_n
ight|$$
 نضع من أجل كل عدد طبيعي $lpha_n = e^{u_n} \,: n$ نضع

- . عين طبيعة المتتالية (α_n) ، ثمّ اكتب حدّها العام (1
- . عين طبيعة المتتالية (β_n) ، ثمّ اكتب حدّها العام (2

$$\cdot$$
 r و n و α_0 بدلالة $S_{\alpha}=e^{u_0}+e^{u_1}+...+e^{u_n}$ و α_0 احسب المجموع (3 http://www.onefd.edu.dz

حل

$$u_{n+1} = u_n + r : n$$
 من أجل كل عدد طبيعي (1 $lpha_{n+1} = e^{u_{n+1}} = e^{u_{n+r}}$ إذن $lpha_{n+1} = e^{u_n} \times e^r = lpha_n \times e^r$ ومنه e^r أمتنالية هندسية أساسها $(lpha_n)$ متنالية هندسية أساسها

 $lpha_n = lpha_0 imes e^r : n$ لدينا من أجل كل عدد طبيعي

$$V_{n+1}=V_n imes q:n$$
 من أجل كل عدد طبيعي $(2$ $eta_{n+1}=\ln\left|v_{n+1}\right|=\ln\left|v_n imes q
ight|$ إذن $eta_{n+1}=\ln\left|v_n\right|+\ln\left|q\right|=eta_n+\ln\left|q\right|$ ومنه (eta_n) متتالية حسابية أساسها (a,b)

* كتابة الحد العام

 $eta_n = eta_0 + \ln |q| : n$ لدينا من أجل كل عدد طبيعي

 $(lpha_n)$ هو مجموع n+1 حدا الأولى للمنتالية الهندسية S_lpha

.
$$S_{\alpha} = \alpha_0 imes \frac{1 - \left(e^r\right)^{n+1}}{1 - e^r}$$
وعليه فإنّ

II. خواص جبرية:

نشاط

b = 4.8 و a = 13.5 و a = 13.5 و a = 13.5 و b = 4.8 و a = 13.5 و b = 4.8 و a = 13.5 و a = 13.5

$$\exp(a) \times \exp(b)$$
 ثم $\exp(a) \times \exp(a)$ و $\exp(a+b)$ ثم $a+b$ $\exp(a) \times \exp(b)$ و $\exp(a+b)$ و $\exp(a+b)$

2. أ) باستعمال مجدول و علما أن رمز الدالة الأسية هو " EXP " أنجز و اتمم و رقة الحساب الموالية:

	Α	В	С	D	E	F	G
1	а	b	a+b	EXP(a)	EXP(b)	EXP(a)xEXP(b)	EXP(a+b)
2	2	3	5				7
3	3,1	3,7	6,8				
4							
5							-
6							
7					2		3
8	1						
9							
10							
11							
12							

ب) ضع تخمينا.

ج) جرب صحة تخمينك من أجل قيم مختلفة للعددين a و b.

حل

18.3

(1

(1 (2

	Α	В	С	D	E	F	G
1	а	b	a+b	EXP(a)	EXP(b)	EXP(a)xEXP(b)	EXP(a+b)
2	2	3	5	7,3890561	20,0855369	148,4131591	148,413159
3	3,1	3,7	6,8	22,1979513	40,4473044	897,8472917	897,847292

$$\exp(a+b) = \exp(a) \times \exp(b)$$
 ب) مخمنة:

ج)

	Α	В	С	D	E	F	G
1	a	b	a+b	EXP(a)	EXP(b)	EXP(a)xEXP(b)	EXP(a+b)
2	2	3	5	7,3890561	20,0855369	148,4131591	148,4131591
3	3,1	3,7	6,8	22,1979513	40,4473044	897,8472917	897,8472917
4	5,1	5,2	10,3	164,021907	181,272242	29732,61885	29732,61885
5	7,1	6,7	13,8	1211,96707	812,405825	984609,1112	984609,1112
6	9,1	8,2	17,3	8955,2927	3640,95031	32605775,72	32605775,72
7	11,1	9,7	20,8	66171,1602	16317,6072	1079754999	1079754999
8	13,1	11,2	24,3	488942,415	73130,4418	35756574812	35756574812
9	15,1	12,7	27,8	3612822,93	327747,902	1,1841E+12	1,1841E+12
10	17,1	14,2	31,3	26695351,3	1468864,19	3,92118E+13	3,92118E+13
11	19,1	15,7	34,8	197253448	6582992,58	1,29852E+15	1,29852E+15
12	21,1	17,2	38,3	1457516796	29502925,9	4,3001E+16	4,3001E+16
13	23,1	18,7	41,8	1,077E+10	132222941	1,424E+18	1,424E+18
14	25,1	20,2	45,3	7,9578E+10	592582108	4,71563E+19	4,71563E+19
15	27,1	21,7	48,8	5,88E+11	2655768756	1,5616E+21	1,5616E+21
16	29,1	23,2	52,3	4,3448E+12	1,1902E+10	5,17132E+22	5,17132E+22

مبرهنة (الخاصية الأساسية)

 $e^{a+b}=e^ae^b$ ، b و a عددین حقیقیین عددین

 $\ln \alpha = \ln \beta$ مع0 > 0 و $\alpha > 0$ مع $0 = \alpha$ مع $0 = \alpha$ مع $0 = \alpha$ الأعداد $\alpha = \beta$ مع $0 = \alpha = \alpha$ مع $0 = \alpha = \alpha$ الأعداد $\alpha = \beta$ ، $\alpha = \alpha$ مع $\alpha = \beta$ مع $\alpha = \alpha$

ا من جهة أخرى:
$$\ln\left(e^{a+b}\right) = a+b$$
 لدينا من جهة

$$\ln\left(e^{a+b}\right) = \ln\left(e^{a}e^{b}\right) \quad \text{إذن} \quad \ln\left(e^{a}e^{b}\right) = \ln\left(e^{a}\right) + \ln\left(e^{b}\right) = a+b$$
منه $e^{a+b} = e^{a}e^{b}$

- ملاحظة: نقول عن الدالة الأسية أنها تحول مجموع إلى جداء.
 - $e^{x^2-2} = e^{x^2} \times e^{-2}$ ، $e \times e^x = e^{x+1}$:أمثلة

نتائج

 $e^{a-b} = \frac{e^a}{e^b}$ و $e^{-a} = \frac{1}{e^a}$ ن (1) من أجل كل عددين حقيقيين a و عددين عددين

برهان

- $e^a imes e^{-a} = e^{a-a} = e^0 = 1$ الدينا: a عدد حقيقي $e^{-a} = e^{a-a} = e^0 = 1$ التالي $e^{-a} = \frac{1}{e^a}$
 - من أجل كل عددين حقيقيين a و b لدينا:

$$e^{a-b} = e^{a+(-b)} = e^a \times e^{-b} = e^a \times \frac{1}{e^b} = \frac{e^a}{e^b}$$

مثال

http://www.onefd.edu.
$$\frac{e^{2x-5}}{e^{x+1}} = e^{(2x-5)-(x+1)} = e^{x-6}$$

ن2) من أجل كل عدد حقيقي a و من أجل كل صحيح نسبي n لدينا $\cdot \left(e^a\right)^n = e^{na}$

برهان

العددان $(e^a)^n$ و موجبان تماما.

$$\ln\left[\left(e^{a}\right)^{n}\right] = n\ln\left(e^{a}\right) = na\ln\left(e\right) = na$$
 لدينا من جهة:

و من جهة أخرى:
$$\ln(e^{na}) = na \ln(e) = na$$
 و من جهة أخرى: $\cdot \left(e^{a}\right)^{n} = e^{na}$ إذن $\cdot \left(e^{a}\right)^{n} = \ln\left(e^{na}\right)$

أمثلة

$$e^{3x} = (e^x)^3$$
 $e^{2x} = (e^x)^2$

تطبيق1

حل، في المجموعة $\mathbb R$ ، ال: عادلة و المتر اجحة

$$e^{-2x+1} > \frac{1}{2}e^{-x+1}$$
 (2) $e^{x+2}e^{2x-3} = 5$ (1)

حل

- و هذا يعني $e^{3x-1}=5$ أي $e^{(x+2)+(2x-3)}=5$ و هذا يعني (1) $x=\frac{1+\ln 5}{3}$ أي $3x-1=\ln 5$
 - الدينا: $e^{-x+1} > 0$ لأن $\frac{e^{-2x+1}}{e^{-x+1}} > \frac{1}{2}$ لدينا:

http://www.onefd.edu.dz
$$\frac{e^{-2x+1}}{e^{-x+1}} = e^{(-2x+1)} = e^{-2x+1} = e^{-2x+1}$$

و منه $\frac{1}{2} - x > \ln\left(\frac{1}{2}\right)$ رق المنه $\frac{1}{2} - x > \frac{1}{2}$ و هذا يعني $\frac{e^{-x}}{e^{-x+1}} > \frac{1}{2}$ و هذا يعني $x < \ln 2$ رق المنابع بالمنابع با

 $S =]-\infty; \ln 2$ إذن: $]-\infty; \ln 2$ هي إذن

تطبيق2

حل، في ٦ ، المعادلة والمتراجحة التاليتين:

$$e^{2x} - e^x - 6 > 0$$
 (2) $e^{2x} - e^x - 6 = 0$ (1)

حل

طريقة

لحل المعادلة $ae^{2x} + be^{x} + c = 0$ نتبع الخطو ات التالية:

أو X: نضع $X=e^x$ من أجل كل X من $X=e^x$ وهنا نلاحظ أن $X\in\mathbb{R}^*$

 \mathbb{R}_+^* في $aX^2 + bX + c = 0$ ثانيا: نحل المعادلة

 $aX^2+bX+c=0$ ثالثا: نعين قيم x ، من أجل كل حل ممكن للمعادلة $X=e^x$ ، من أجل كل حل مكن للمعادلة \mathbb{R}_+^* انطلاقا من العلاقة

فمثلا إذا كان \mathbb{R}_+^* فمثلا إذا كان $AX^2 + bX + c = 0$ نقوم بحل فمثلا إذا كان $AX^2 + bX + c = 0$ نقوم بحل المعادلة $AX^2 + bX + c = 0$ نتعيين قيمة $AX^2 + bX + c = 0$ نتعيين قيمة بما

لحل المتراجحة $ae^{2x}+be^{x}+c>0$ ، نتبع الخطوات التالية: $X=e^{x}$ من $X=e^{x}$ من أجل كل X من $X\in\mathbb{R}^{*}_{+}$

ثالثا: نعين قيم x ، من أجل كل حل ممكن للمتر اجحة

 $X=e^{x}$ في \mathbb{R}_{+}^{*} انطلاقا من العلاقة $aX^{2}+bX+c=0$

 X_0 هي \mathbb{R}^*_+ هي $aX^2+bX+c>0$ فمثلا إذا كانت حلول المتر اجحة $\alpha < e^x < \beta$ فإننا نقوم بحل المتر اجحة المضاعفة $\alpha < X_0 < \beta$ بحيث نجد $\ln(\alpha) < x < \ln(\beta)$

ومنه نستتج أنّ حلول المتراجحة $ae^{2x}+be^{x}+c>0$ هي كل قيم $\ln(\alpha);\ln(\beta)$ المجال

أ) بوضع $X=e^x$ نحصل على المعادلة ذات المجهول X التالية:

$$X^2 - X - 6 = 0$$

X''=3 و منه حلول المعادلة $X^2-X-6=0$ هما: $\Delta=25$ و منه حلول المعادلة $\Delta=25$ هما: $\Delta=25$ و منه حلولا لأن $\Delta=25$ و $\Delta=25$ تعنى $\Delta=25$ لا تقبل حلولا لأن $\Delta=25$ و $\Delta=25$ تعنى

 $X^2 - X - 6 > 0$: ب) بوضع $X = e^x$ نحصل على المتر اجحة

للمعادلة $0 = 6 - X - X^2 - X$ جذر إن هما 0 = 0 و بالتالى فإشارة

 $X^2 - X - 6$ هي کالآتي:

X		-2		3		+∞
$X^2 - X - 6$	+	0	-	0	+	

حلول المتراجحة 0 < 6 > 0 في \mathbb{R}_+^* هي إذن الأعداد X > 3 الحقيقية X بحيث: X > 3

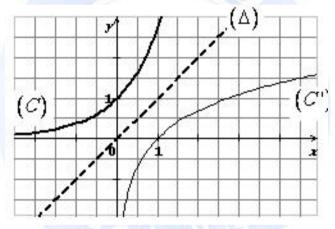
 $\cdot x > \ln 3$ تعنی $e^x > 3$

 $x \in \ln 3$; + ∞ حبيث $x \in \ln 3$ حلول المتراجحة (2) هي

$: x \mapsto \exp(x)$ دراسة الدالة الأسية. III

نشاط

نعتبر في مستو منسوب إلى معلم متعامد و متجانس $(O;\vec{i}\,,\vec{j})$ " exp " و" المنحنيين (C') و (C') الممثلين على التوالي للدالتين " exp " و" رأينا سابقا أن (C') هو نظير (C') بالنسبة إلى المستقيم (C) الذي معادلته y = x



خمن نهایتی الداله " \exp " عند ∞ و عند $\infty+$.

حل

نقر أعلى التمثيل البياني السابق أن من اجل كل x من \mathbb{R} لدينا: $\lim_{x \to +\infty} \exp(x) = +\infty \quad \lim_{x \to +\infty} x = +\infty \quad \exp(x) > x$ حسب مبر هنات المقارنة).

من جهة أخرى: المنحني الذي يمثل الدالة exp يقبل عند ∞-مستقيما http://www.onefd.edu.dz

. $\lim_{x\to -\infty} \exp(x) = 0$ إأي محور الفواصل إذن y=0

النهايات

خاصية

$$\lim_{x \to -\infty} e^x = 0 \quad \text{o} \quad \lim_{x \to +\infty} e^x = +\infty$$

برهان

- $\lim_{x\to +\infty} e^x = +\infty$ نقبل دون برهان *
- $e^x = e^{-X} = \frac{1}{e^X}$ من أجل X من X = -X و منه X = -X

 $\lim_{x\to -\infty} X = +\infty$ لدينا:

$$\lim_{X \to +\infty} \frac{1}{e^X} = 0$$
 و بما أن $\lim_{X \to +\infty} \left(e^X\right) = +\infty$ و بما أن

• التالي فإن، حسب المبرهنة المتعلقة بنهاية دالة مركبة، حسب المبرهنة المتعلقة بنهاية دالة مركبة،

مشتقة الدالة الأسية

خاصية

الدالة الأسية قابلة للاشتقاق على \mathbb{R} و لدينا من أجل كل عدد $\exp'(x) = e^x : x$

برهان

$$f(x) = \ln[\exp(x)]$$
 بير الدالة f المعرفة على \mathbb{R} بير

 $u: X \mapsto \exp(X)$ خيث $f = \ln \circ u$ نلاحظ أن $f = \ln \circ u$ خيع الحقوق محفوظة G

http://www.onefd.edu.dz

 \mathbb{R} الدالة f تقبل الاشتقاق على \mathbb{R} ولدينا من أجل كل f من

$$f'(x) = \frac{u'(x)}{u(x)} = \frac{\exp'(x)}{\exp(x)}$$

نتائج

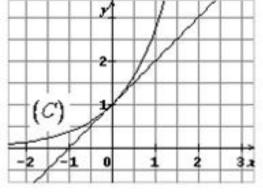
 $\cdot e^x>0$ ، $\mathbb R$ من x من أجل كل x من x من x الدالة الأسية متز ايدة تماما على $x\mapsto e^x$ الدالة أصلية للدالة $x\mapsto e^x$ على $x\mapsto e^x$ الدالة أصلية للدالة $x\mapsto e^x$

التمثيل البياني

نستعين بجدول التغيرات الإنشاء المنحني

-00	0	1	+∞
		+	
		,	≯ +∞
	-8	-∞ 0	-∞ 0 1 + :

معادلة المماس عند النقط



جميع الحقوق محفوظة (33

تطبيق1

 $f(x) = 2 + e^{-2x+3}$ نعتبر الدالة f المعرفة على \mathbb{R} بالعبارة:

- 1. عين نهايات الدالة f عند أطراف مجموعة تعريفها.
 - 2. ادر س اتجاه تغير الدالة 2

حل

$$\lim_{X \to +\infty} e^X = +\infty$$
 و بما أن $\lim_{X \to -\infty} (-2x+3) = +\infty$.1 $\lim_{X \to -\infty} f(x) = +\infty$ و منه $\lim_{X \to -\infty} e^{-2x+3} = +\infty$

$$\lim_{x \to -\infty} e^{-2x+3} = 0$$
 فإن
$$\lim_{X \to -\infty} e^{X} = 0$$
 و منه
$$\lim_{X \to -\infty} f(x) = 2$$

 \mathbb{R} من \mathbb{R} من \mathbb{R} و لدينا من أجل كل \mathbb{R} من \mathbb{R} . $f'(x) = -2e^{-2x+3}$

 $\cdot f'(x) < 0$ ، \mathbb{R} من x من أجل كل $e^{-2x+3} > 0$ بما أن $e^{-2x+3} > 0$ بنا إذن الدالة f منتاقصة تماما على

تطبيق2

(C) نعتبر الدالة $f(x)=\frac{e^x+1}{e^x-1}$: بـــ : \mathbb{R}^* على $f(x)=\frac{e^x+1}{e^x-1}$ و ليكن $f(x)=\frac{e^x+1}{e^x-1}$ تمثيلها البياني.

المستقيمات المقاربة للمنحني f عند أطراف مجموعة تعريفها. استتج المستقيمات المقاربة للمنحني (C).

2. ادرس اتجاه تغیر الدالة f ثم شكل جدول تغیر اتها. ارسم المنحني (C) في معلم متعامد ومتجانس.

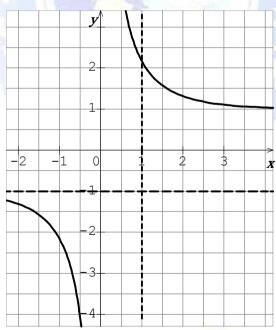
حل

$$\lim_{x\to\infty} f(x) = -1$$
 إذن $\lim_{x\to\infty} \frac{e^x+1}{e^x-1} = -1$ و منه $\lim_{x\to\infty} e^x = 0$ إذن $\lim_{x\to\infty} e^x = 0$ أي الدينا و منه التعيين. $\lim_{x\to\infty} e^x = +\infty$ أنعلم أن $\lim_{x\to\infty} e^x = +\infty$ و منه لدينا حالة عدم التعيين.

$$\lim_{x \to +\infty} \frac{1}{e^{x}} = 0$$
 و بما أن $\lim_{x \to +\infty} \frac{e^{x} + 1}{e^{x} - 1} = \lim_{x \to +\infty} \frac{e^{x} \left(1 + \frac{1}{e^{x}}\right)}{e^{x} \left(1 - \frac{1}{e^{x}}\right)} = \lim_{x \to +\infty} \frac{1 + \frac{1}{e^{x}}}{1 - \frac{1}{e^{x}}}$

 $\lim_{x\to +\infty} f(x) = 1$ فإن

ج) لدينا



$$\lim_{x\to 0} (e^x - 1) = 0$$
 $\lim_{x\to 0} (e^x + 1) = 2$

x < 0 يعني $e^x < 1$ نعلم أن

x > 0 يعنى $e^x > 1$

و بالتالي
$$f(x) = +\infty$$
 و $\lim_{x \to 0} f(x) = -\infty$ و بالتالي

يقبل المنحنى (C) ثلاث مستقيمات مقاربة معادلاتها هي:

$$y = 1$$
 $y = -1$ $x = 0$

و لدينا
$$f(2)$$
 قابلة للاشتقاق على المجالين $f(2)$

کل علی کل
$$f'(x) = \frac{-2e^x}{\left(e^x - 1\right)^2}$$

من المجالين $]0;\infty-[e]\infty+0[.$

ملاحظة

يمكن إثبات أن الدالة f فردية كالآتي:

$$f\left(-x\right) = \frac{e^{-x} + 1}{e^{-x} - 1}$$
 من أجل كل x من أجل كل x من أجل كل x من أجل كل x

$$f(-x) = \frac{e^{-x} + 1}{e^{-x} - 1} = \frac{\frac{1}{e^x} + 1}{\frac{1}{e^x} - 1} = \frac{\frac{1 + e^x}{e^x}}{\frac{1 - e^x}{e^x}} = \frac{1 + e^x}{1 - e^x} = \frac{e^x + 1}{-(e^x - 1)}$$

$$f(-x) = -f(x)$$
 أي $f(-x) = -\frac{e^x + 1}{e^x - 1}$

 $\cdot(C)$ فردية و بطبيعة الحال المبدأ مركز تناظر f

: expou دراسة دالة.IV

نشاط

نفرض وجود دالة f معرفة و قابلة للاشتقاق على \mathbb{R} بحيث:

$$f'(x) = f(x)$$
 ، \mathbb{R} من $f(0) = 1$

عين علاقة تربط بين و و و في كل حالة من الحالات التالية:

$$g: X \mapsto f(3x)$$

$$g: X \mapsto f(-X)$$
 (φ

$$g: X \mapsto \frac{1}{f(X)}$$
 (ε

حل

أ)تذكر مشتقة دالة مركبة.

$$g(x) = f[u(x)]$$
 نضع $u(x) = 3x$ نضع $g(x) = f(3x)$

$$g'(x) = u'(x)$$
 $f[u(x)]$ أي $g'(x) = u'(x)$ $f'[u(x)]$

$$g'(x) = 3$$
 $g(x)$ أي

$$u(x) = -x$$
 نضع $g(x) = f(-x)$ (ب

$$g(x) = f[u(x)]$$
 لدينا

$$g'(x) = u'(x)$$
 $f[u(x)]$ أي $g'(x) = u'(x)$ $f'[u(x)]$

$$g'(x) = -g(x)$$
 أي

$$g'(x) = -\frac{f(x)}{\left\lceil f(x) \right\rceil^2} \quad \text{if} \quad g'(x) = -\frac{f'(x)}{\left\lceil f(x) \right\rceil^2} \quad \text{if} \quad g(x) = \frac{1}{f(x)} \quad \text{if} \quad g$$

http://www.onefd.edu'(x) = -
$$g(x)$$
 $g'(x) = \frac{1}{f(x)}$

النهايات

لدر اسة نهاية دالة $\exp u$ نستعمل المبرهنة الخاصة بنهاية دالة مركبة.

 $f(x) = e^{-x+2}$ نعتبر الدالة f المعرفة على \mathbb{R}

- الدینا $\lim_{X \to +\infty} e^X = +\infty$ و بما أن $\lim_{X \to -\infty} (-x+2) = +\infty$ فإن $\lim_{X \to -\infty} f(x) = +\infty$ أي $\lim_{X \to -\infty} e^{-x+2} = +\infty$
 - لدينا $\lim_{X \to -\infty} e^X = 0$ و بما أن $\lim_{X \to +\infty} (-x+2) = -\infty$ لدينا $\lim_{X \to +\infty} f(X) = 0$ أي $\lim_{X \to +\infty} e^{-x+2} = 0$

اتجاه التغير

خاصية

إذا كانت u دالة معرفة على مجال I فإن للدالتين u و $\exp u$ نفس اتجاه التغير ات على المجال I .

بر هان

نعلم أن الدالة " \exp " متز ايدة تماما على \mathbb{R} ، إذن حسب المبر هنة الخاصة باتجاه تغير دالة مركبة يكون للدالتين u و \exp نفس اتجاه التغير ات على المجال I.

مثال

 $f(x) = e^{x^2-1}$ بير الدالة f المعرفة على f

نلاحظ أن $\pi=\exp u$ حيث u هي الدالة المعرفة على π بالشكل u

f الدالة u متناقصة تماما على المجال $[0,\infty]$ فإن الدالة متناقصة تماما على المجال $[0,\infty]$.

f الدالة u متز ايدة تماما على المجال $[0;+\infty[$ فإن الدالة u متز ليدة تماما على المجال $[0;+\infty[$

المشتقة والدوال أصلية

خاصية

إذا كانت u دالة قابلة للاشتقاق على مجال I فإن:

x كل كل من أجل من أجل كل الدالة و $\exp u$ قابلة للاشتقاق على الدالة و $\exp u$

$$\cdot (\exp \circ u)'(x) = u'(x)e^{u(x)}$$

 \cdot I على $x\mapsto u'(x)e^{u(x)}$ على دالة أصلية للدالة $x\mapsto e^{u(x)}$

مثال

- هي $f(x) = e^{x^2 + x + 1}$ بي \mathbb{R} هي المعرفة على $f(x) = e^{x^2 + x + 1}$ هي $f'(x) = (2x + 1)e^{x^2 + x + 1}$
 - f الدالة F حيث $F(x) = e^{-x^2}$ هي دالة أصلية للدالة $F(x) = -2xe^{-x^2}$ حيث

تطبيق1

 $f\left(x\right)=e^{2+\ln x}$ نعتبر الدالة f المعرفة على المجال $0;+\infty$ المعرفة على المجال f عند 0 و عند $\infty+$.

حل

$$\lim_{X \to -\infty} e^X = 0$$
 لدينا: $\lim_{X \to 0} f(x) = -\infty$ لأن $\lim_{X \to 0} (2 + \ln X) = -\infty$ لدينا: $\lim_{X \to 0} f(x) = 0$ و بالتالي $\lim_{X \to 0} e^{2 + \ln X} = 0$

لدينا:
$$\lim_{x \to +\infty} f(x) = +\infty$$
 لأن $\lim_{x \to +\infty} (2 + \ln x) = +\infty$ و بما أن $\lim_{x \to +\infty} f(x) = +\infty$ و بالتالي $\lim_{x \to +\infty} e^{2 + \ln x} = +\infty$ فإن $\lim_{x \to +\infty} e^{2 + \ln x} = +\infty$

ملاحظة

 $[0;+\infty]$ يمكن ملاحظة أنه من أجل كل [x] من

$$f(x) = e^{2+\ln x} = e^2 e^{\ln x} = e^2 x$$

تطبيق 2

(C) نعتبر الدالة $f(x) = \ln(e^{2x} + 1)$ ب \mathbb{R} ب المعرفة على \mathbb{R} ب المعرفة على منحنيها البياني.

- . أحسب f'(x) ثم استتج اتجاه تغير الدالة f
- 2. عين نقط المنحني (C) التي يكون عندها المماس موازيا للمستقيم $y = \frac{x}{3}$ ذو المعادلة (Δ)

حل

$$f'(x) = \frac{2e^{2x}}{e^{2x}+1}$$
 ، \mathbb{R} من أجل كل x من أجل .1

f بما أن f'(x)>0 ، \mathbb{R} من f(x)>0 و منه الدالة $e^{2x}>0$ من البدة تماما على \mathbb{R} .

$$(\Delta)$$
 عند نقطة من (C) فاصلتها X مو ازيا للمستقيم \cdot 2. يكون المماس عند نقطة من \cdot $\frac{2e^{2x}}{e^{2x}+1}=\frac{1}{3}$ أي $f'(x)=\frac{1}{3}$ يعني

$$e^{2x} = \frac{1}{5}$$
 ویکون لدینا اذن $\frac{2e^{2x}}{e^{2x} + 1} = \frac{1}{3}$ و هذا یعنی $e^{2x} = \frac{1}{5}$ و هذا یعنی $e^{2x} = \frac{1}{5}$

إذن بالتالي توجد نقطة وحيدة من (C) فاصلتها $x = -\frac{\ln 5}{2}$ يكون المماس عندها مو ازيا للمستقيم (Δ) .

تطبيق 3

حل

$$x$$
 بوضع $u'(x)=2$ یکون لدینا $u(x)=2x+3$ و منه من أجل كل $f(x)=\frac{1}{2}\times u'(x)e^{u(x)}$ ، $\mathbb R$ من

و بالتالي تقبل الدالة f على \mathbb{R} دو الا أصلية f معرفة كما يلي:

حيث c عدد حقيقي ثابت. $F(x) = \frac{1}{2}e^{2x+3} + c$

جميع الحقوق محفوظة (C)

ولدينا
$$g(x) = \frac{1}{2}e^{2(-1)+3} + c = 0$$
 و منه $g(x) = \frac{1}{2}e^{2x+3} + c$ اي

$$g(x) = \frac{1}{2}e^{2x+3} - \frac{e}{2}$$
 نجد هکذا: $c = -\frac{1}{2}e$ و بالتالي $\frac{1}{2}e + c = 0$

http://www.onefd.edu.dz

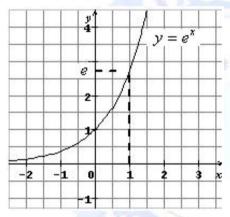
٧. ملخص:

1. حول الدالة الأسية والدالة اللوغاريتمية النيبيرية

. $e^{Lnx}=x$ إذن $x=e^y$ معناه y=Lnx: $]0;+\infty[$ من أجل كل $x=e^x$ من أجل كل عدد حقيقى $x=e^x$ من أجل كل عدد حقيقى

2. قراءة بياتية

- \mathbb{R} معرتف على e^{x}
 - $e^0 = 1$
- الدالة e^x متز ايدة تماما.
 - \cdot x>0 يكافئ $e^x>1$
 - $\cdot x < 0$ يكافئ $e^x < 1$
- $\lim_{x \to +\infty} e^x = +\infty \quad \lim_{x \to -\infty} e^x = 0 \quad \bullet$



3. مشتقات و دوال أصلية

- $oldsymbol{.}\ x \mapsto e^x$ مشتقة الدالة $x \mapsto e^x$ على مشتقة الدالة $oldsymbol{.}\ x \mapsto e^x$
 - \cdot الله أصلية للدالة u'e'' على مجال e''
 - (I قابلة للاشتقاق على (I).

4. خواص

 $n \in \mathbb{Z}$ و عددان حقیقیان و b

 $e^{a+b}=e^a imes e^b$ تحول مجموع إلى جداء أي \exp الدالة

http://www.onefd.edu.
$$(e^a)^n = e^{an}$$
 $\int \frac{1}{e^b} = e^{-b}$ $\int \frac{e^a}{e^b} = e^{a-b}$ $\int \frac{e^a}{e^b} = e^{a-b}$

أ. تمارين

. 1

$$f(x)=x+1-rac{2e^x}{e^x+1}$$
 نعتبر الدالة f المعرفة على \mathbb{R} بــِـ: \mathbb{R} بــِـن الدالة f المعرفة على f البياني في معلم متعامد و متجانس $f(x)$ حيث و ليكن $f(x)$

و ليكن (C) تمتيلها البياني في معلم متعامد و متجانس (C;I,J) حيث وحدة الطول هي 1cm.

- f بين أن الدالة f فردية. ماذا تستتج بالنسبة للمنحني f
- $f(x) = x + 1 \frac{2}{e^{-x} + 1}$ ، \mathbb{R} من x کل کل کل .2
 - $+\infty$ استنتج نهاية الدالة f عند
- $f(x) = x 1 + \frac{2}{e^x + 1}$ ، \mathbb{R} من x کل کل کل .3
- ب) بين أن المستقيم (Δ) ذو المعادلة y=x-1 مستقيم مقارب $+\infty$ عند (C) عند المنحنى
 - ج) حدد وضعية المنحني (C) بالنسبة للمستقيم المقارب (Δ)
- 4. أدرس اتجاه تغير الدالة f على المجال $]\infty+[0]$ ثم شكل جدول تغير اتها.
- .0 عين معادلة لـ (d) مماس المنحني (C) عند النقطة التي فاصلتها .5
- و. أرسم (Δ) ، (Δ) ، (Δ) ، (Δ) ، (Δ) هو المستقيم المقارب . $-\infty$ عند (Δ) عند Δ

7. عين دالة أصلية للدالة f على \mathbb{R} ثم أحسب بــِ cm^2 مساحة الحين المحدد بالمنحني (C)، المستقيم (Δ) و المستقيمين اللذين (C) معدلتاهما C و C و C و C معدلتاهما C و C

.2

الجزء الأول:

نعتبر المنتالية العددية (u_n) المعرفة على $\mathbb N$ بحدها العام كما يلي: $\cdot u_n = e^{-\frac{1}{3} + 2n}$

 $[0;+\infty[$ المعرفة على المجال f المعرفة على المجال f المعرف f المعرف $f(x)=e^{-\frac{1}{3}+2x}$

 (u_n) استنتج اتجاه تغير المنتالية.

3. بين أن المنتالية (u_n) هندسية يطلب تحديد حدها الأول و أساسها.

 $S_n = u_0 + u_1 + \dots + u_n$ ، $\mathbb N$ من n کل n نضع من أجل کل n

n أأحسب S_n بدلالة

$$S_n = \frac{e^{-\frac{1}{3}}}{1-e^2} \times (1-e^{10})$$
 بعين العدد الطبيعي n بحيث يكون العدد الطبيعي المجزء الثاني:

 $v_n = \ln(u_n)$ ، $\mathbb N$ من أجل كل n كل من أجل نضيع

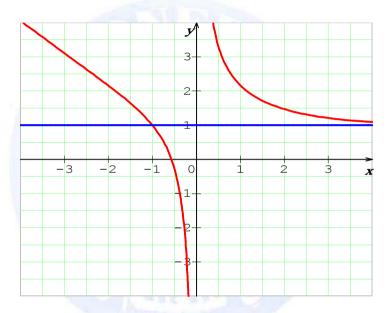
- 1. ما هي طبيعة المتتالية (v_n) ؟ حدد حدها الأول و أساسها.
- $S'_n = V_0 + V_1 + ... + V_n$ عبر بدلالة n عن المجموع عن علما أن S'_n
 - $S_n' = \frac{160}{3}$ يين العدد الطبيعي n بحيث يكون 3.

http://www.onefd.edu.dz

الجزء A:

المنحني (\mathcal{C}) في الشكل الموالي هو التمثيل البياني لدالة f معرفة على المنحني المستوي المنسوب إلى معلم متعامد و متجانس ($O; \vec{i}, \vec{j}$).

محور التراتيب و المستقيم الذي معادلته y=1 مقاربان للمنحني (\mathcal{C}).



1. اقرأ بيانيا نهايات الدالة f عند أطراف مجموعة التعريف.

$$f(x) > 1$$
 (ب بيانيا كل من : أ) $f(x) = 1$ ؛ $f(x) = 1$ الجزء B :

 $f(x) = \frac{e^x + x}{e^x - 1}$: معرفة على بـ f(x) معرفة أن الدالة

$$f(x) = \frac{1 + \frac{x}{e^x}}{1 - \frac{1}{e^x}}$$
: أ- تحقق أن

 $\lim_{x \to +\infty} f(x)$ اب نقبل أن $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ ، جد من جدید إذن -

 (e^x-1) ادرس، حسب قیم X اشاره -1

 $\frac{e^x + X}{e^x - 1} > 1$ المترجحة

? بین أن $\lim_{x \to \infty} [f(x) + x] = 0$ ماذا تستنج

4. ادرس وضعية المنحني (\mathfrak{C}) بالنسبة إلى المستقيم الذي معادلته v=-x

.4

نعتبر الدالة f المعرفة على \mathbb{R} بـــ: \mathbb{R} بـــ الدالة f المعرفة على \mathbb{R} بـــ تمثیلها البیاني.

 $f(x) = x + Ln(e^{-x} + 1)$ لدينا البين أن من أجل كل x من x من x من 1

2.ادرس تغيرات f.

 \cdot 0 التي فاصلتها \cdot 1. (Δ) التي فاصلتها \cdot 3.

 $\cdot(C)$ عين المستقيمات المقاربة للمنحنى .4

 (Δ) و (C) و أنشى

 $f(x) = 2e^{2x} - 3e^{x} + 1$:ب]- ∞ ; 0] نعرف الدالة $f(x) = 2e^{2x} - 3e^{x} + 1$

: حيث (O;I,J) ميعامد البياني في معلم البياني و ليكن

OI = 8 cm OI = 2 cm

 $f\left(Ln\frac{3}{4}\right) \leftarrow (1.1)$

ب)عين تقاطع (C) مع محور الفواصل.

f ادرس تغیر ات f.

(C) يقبل مستقيما مقاربا يطلب تعيينه. أنشئ (C)

 $[-\infty; 0]$ عين دالة أصلية F للدالة f على الدالة أصلية

ب) احسب المساحة S للحيز المستوي المحدد بالمنحني (C) و

y=1 و $x=Ln\frac{1}{2}$ ، $x=Ln\frac{3}{4}$ و $x=Ln\frac{3}{4}$

7.عين بيانيا، حسب قيم العدد الحقيقي m، عدد حلول المعادلة:

 $2e^{2x} - 3e^x + 1 - m = 0$

6

2. نرمز بـ f' إلى مشتقة الدالة f .بين أن

 $f'(x) = \frac{10 - x}{100 \times 10^{10}}$

http://www.onefd.edu.dz

[0;12] على [0;12].

4. نرمز بــ r' إلى مشتقة الدالة r عبر عن f' بدلالة r' ثم بين أن r'(x) لهما نفس الإشارة من اجل كل عدد حقيقي r'(x) من r'(x)

[0;12] على [10;0].

الجزء B:

ابين أن الدالة R المعرفة بـ: 1

$$R(x) = -9000(x+10)e^{-0.1(x-2)}$$

دالة أصلية للدالة r على [0;12]

المعرفة بـ: r_m القيمة المتوسطة r_m المدالة المعرفة بـ:

$$r_m = \frac{1}{12} \int_{0}^{12} r(x) dx$$

 10^{-2} تعطى أو لا القيمة المضبوطة ، ثم القيمة المقربة إلى

ب. حلول التمارين

1.

من أجل كل x من $\mathbb R$ لدينا:

أي
$$f(x) + f(-x) = x + 1 - \frac{2e^x}{e^x + 1} - x + 1 - \frac{2e^{-x}}{e^{-x} + 1} = 2 - \frac{2e^x}{e^x + 1} - \frac{\frac{2}{e^x}}{\frac{1}{e^x} + 1}$$

$$f(x) + f(-x) = 2 - \frac{2e^x}{e^x + 1} - \frac{\frac{2}{e^x}}{\frac{1 + e^x}{e^x}} = 2 - \frac{2e^x}{e^x + 1} - \frac{2}{1 + e^x} = \frac{2e^x + 2 - 2e^x - 2}{1 + e^x} = 0$$

http://www.onefd.edu.d(-x) = 0 الدينا إذن \mathbb{R} من أجل كل X من أجل كل X من أجل كل من المناط

أي
$$f(-x) = -f(x)$$
 و منه $f(x)$

$$\cdot(C)$$
 فردية إذن المبدأ o للمعلم مركز نتاظر f

اً) من أجل كل x من \mathbb{R} لدينا:

$$f(x) = x + 1 - \frac{\frac{2}{e^{-x}}}{\frac{1}{e^{-x}} + 1} = x + 1 - \frac{\frac{2}{e^{-x}}}{\frac{1 + e^{-x}}{e^{-x}}} = x + 1 - \frac{2}{e^{-x} + 1}$$

$$\begin{cases} \lim_{x \to +\infty} (x + 1) = +\infty \\ \lim_{x \to +\infty} e^{-x} = 0 \end{cases} \quad \text{if } \lim_{x \to +\infty} f(x) = +\infty \quad \text{(} \text{.}$$

اً) من أجل كل x من $\mathbb R$ لدينا: 3

$$f(x) = x + 1 - \frac{2e^{x}}{e^{x} + 1} = x - 1 + 2 - \frac{2e^{x}}{e^{x} + 1} = x - 1 + \frac{2(e^{x} + 1) - 2e^{x}}{e^{x} + 1}$$

$$f(x) = x - 1 + \frac{2(e^{x} + 1) - 2e^{x}}{e^{x} + 1}$$

$$f(x) = x - 1 + \frac{2}{e^{x} + 1}$$

$$\lim_{x \to +\infty} \left(e^x + 1 \right) = +\infty \quad \forall \quad \lim_{x \to +\infty} \left[f(x) - (x - 1) \right] = \lim_{x \to +\infty} \frac{2}{e^x + 1} = 0$$

$$(2)$$

$$y=x-1$$
 معادلته (Δ) معادلته به مستقیما مقاربا مائلا (Δ) معادلته به پنجامته به مستقیما

ادینا:
$$\mathbb{R}$$
 من X من أجل كل $f(x) - (x-1) = \frac{2}{e^x + 1}$

$$\cdot$$
(Δ) يقع فوق (C) نستتج أن $f(x)-(x-1)>0$

$$f(x) = x - 1 + 2\frac{1}{e^x + 1}$$
 دينا .4

$$\begin{cases} \lim_{x \to +\infty} (x - 1) = +\infty \\ \lim_{x \to +\infty} \frac{2}{e^{x} + 1} = 0 \end{cases} \quad \forall \lim_{x \to +\infty} f(x) = +\infty \quad \bullet$$

$$-\frac{u'}{u^2}$$
 هي $\frac{1}{u}$ هي $f'(x) = 1 - \frac{2e^x}{(e^x_0)^2 + 1}$ • http://www.onefd.edu.dz

$$f'(x) = \frac{(e^x + 1)^2 - 2e^x}{(e^x + 1)^2} = \frac{e^{2x} + 2e^x + 1 - 2e^x}{(e^x + 1)^2} = \frac{e^{2x} + 1}{(e^x + 1)^2}$$

f'(x) > 0 الدينا: X من X کل من الجل کل من

X	0	+ ∞
f'(x)		
f(x)		> +00
128 - 28	0	

$$y = f'(0)(x-0) - f(0)$$
 : (d) make the standard standard (d)

$$y = x$$
 أي $y = 1(x - 0) - 0$

6. معادلة لـ: ('Δ):

الدينا
$$f(x) = x + 1 - \frac{2}{e^{-x} + 1}$$
 لدينا

$$\lim_{x \to -\infty} \left[f(x) - (x+1) \right] = \lim_{x \to -\infty} \frac{2}{e^{-x} + 1} = 0 \lim_{x \to -\infty} \left(e^{-x} + 1 \right) = +\infty$$

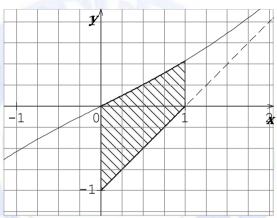
y=x+1 معادلته (Δ') معادلته ایت مستقیما مقاربا مائلا (Δ') معادلته ایت مستقیما



.7

أ)تذكر أن Lnu هي دالة أصلية للدالة u ، u المنتقاق على المنتقاق على مجال I وانقبل الاشتقاق على I . I مجال I وانقبل الاشتقاق على المنتقاق ا

$$\mathbb{R}$$
 يا $X\mapsto \frac{e^x}{e^x+1}$ الدالة أصلية للدالة أصلية $X\mapsto Ln\big(e^x+1\big)$ على $E(x)\mapsto \frac{e^x}{e^x+1}$ هي دالة أصلية للدالة $E(x)\mapsto F(x)=\frac{x^2}{2}+x-2Ln\big(e^x+1\big)$ هي دالة أصلية للدالة $E(x)\mapsto F(x)=x+1-\frac{2e^x}{e^x+1}$. $E(x)\mapsto F(x)=x+1-\frac{2e^x}{e^x+1}$ بنسمى $E(x)\mapsto F(x)=x+1$ مساحة الشطح المطلوب.



$$S = \int_0^1 \left[f(x) - (x - 1) \right] dx = \left[F(x) - \left(\frac{x^2}{2} - x \right) \right]_0^1$$

$$S = \left[\frac{x^2}{2} + x - 2Ln(e^x + 1) - \frac{x^2}{2} + x \right]_0^1 \quad \text{if} \quad S = \left[2x - 2Ln(e^x + 1) \right]_0^1 = 2 \left[x - Ln(e^x + 1) \right]_0^1 \quad \text{if} \quad S = 2 \left[Lne^x - Ln(e^x + 1) \right]_0^1 = 2 \left[Ln\frac{e^x}{e^x + 1} \right]_0^1 = 2 \left[Ln\frac{e}{e + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Lne^x - Ln(e^x + 1) \right]_0^1 = 2 \left[Ln\frac{e}{e^x + 1} \right]_0^1 = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Lne^x - Ln(e^x + 1) \right]_0^1 = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Lne^x - Ln(e^x + 1) \right]_0^1 = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Lne^x - Ln(e^x + 1) \right]_0^1 = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Lne^x - Ln(e^x + 1) \right]_0^1 = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Lne^x - Ln(e^x + 1) \right]_0^1 = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac{1}{2} \right] \quad \text{if} \quad S = 2 \left[Ln\frac{e}{e^x + 1} - Ln\frac$$

$$S \simeq 0,76 \; cm^2$$
 إذن $S = 2 \left[Ln rac{\left(rac{e}{e+1}
ight)}{\left(rac{1}{2}
ight)}
ight] = 2Ln \left(rac{2e}{e+1}
ight)$ أي

.2

$$f'(x) = 2 e^{-\frac{1}{3} + 2x}$$
: italia likelih likelih

من أجل كل x من $]\infty+0$ لدينا 0 (x)>0 إذن الدالة f متزايدة تماما على $]\infty+\infty$.

 (u_n) و $u_n = f(n)$ و يا متر ايدة تماما على $u_n = f(n)$ إذن المتتالية $u_n = f(n)$ متر ايدة تماما.

$$\frac{u_{n+1}}{u_n} = \frac{e^{-\frac{1}{3} + 2(n+1)}}{e^{-\frac{1}{3} + 2n}} = \frac{e^{-\frac{1}{3}} \times e^{2(n+1)}}{e^{-\frac{1}{3}} \times e^{2n}} = \frac{e^{2(n+1)}}{e^{2n}} = e^{2(n+1)-2n} = e^2 \cdot 3$$

من اجل كل n من الجل كل u_n لدينا u_n لدينا u_n الأول u_n من اجل كل u_n الأول $u_0=e^{-\frac{1}{3}}$

.4

$$\cdot S_n = \frac{e^{-\frac{1}{3}}}{1 - e^2} \left(1 - e^{2n+2} \right) \quad \text{if} \quad S_n = u_0 \quad \frac{1 - \left(e^2 \right)^{n+1}}{1 - e^2} = e^{-\frac{1}{3}} \quad \frac{1 - e^{2n+2}}{1 - e^2} \quad \text{(i)}$$

$$\frac{e^{-\frac{1}{3}}}{1-e^2} \left(1-e^{2n+2}\right) = \frac{e^{-\frac{1}{3}}}{1-e^2} \times \left(1-e^{10}\right) \text{ معناه } S_n = \frac{e^{-\frac{1}{3}}}{1-e^2} \times \left(1-e^{10}\right) \text{ (ب. }$$

$$n = 4 \text{ (d. } 2n = 8 \text{ (d. } 2n = 10 \text{ (d.$$

الجزء A:

- . $\lim_{x \to 0} f(x) = -\infty$:(\mathcal{C}) محور التراتيب مستقيم مقارب للمنحني .1
 - $+\infty$ المستقيم الذي معادلته y=1 مقارب للمنحني $+\infty$ المستقيم الذي y=1 . $+\infty$ المستقيم الذي $+\infty$
 - $\lim_{x \to -\infty} f(x) = +\infty *$

.2

 $-\frac{1}{2}$ المستقيم الذي معادلته y=1 يقطع y=1 المستقيم الذي معادلته f(x)=1 تقبل حلا وحيدا هو $\frac{1}{2}$.

ب)الفو اصل X لنقط (\mathcal{C}) التي تقع فوق المستقيم الذي معادلته y=1 هي كل الأعداد الحقيقية من المجموعة $[0,+\infty]$.

 \cdot] $-\infty$; -1[\cup]0; $+\infty$ [\cdot هي: $f\left(x\right)>1$ المعادلة حلول المعادلة المعادل

الجزء B:

.1

$$f(x) = \frac{1 + \frac{x}{e^{x}}}{1 - \frac{1}{e^{x}}} \quad \text{if} \quad f(x) = \frac{e^{x} \left(1 + \frac{x}{e^{x}}\right)}{e^{x} \left(1 - \frac{1}{e^{x}}\right)} \text{(i)}$$

$$\lim_{x \to +\infty} \frac{e^x}{X} = +\infty \quad \dot{\forall} \quad \lim_{x \to +\infty} \frac{X}{e^x} = \lim_{x \to +\infty} \frac{1}{\left(\frac{e^x}{X}\right)} = 0 \quad \vdots$$
 ب) لدينا

http://www.onefd.edu.dz

$$e^x-1$$
 أ)إشارة

$$\cdot$$
 $x>0$ و یکافی $e^x>e^0$ و یکافی $e^x>1$ یکافی $e^x-1>0$

$$\cdot x < 0$$
 یکافئ $e^x - 1 > 0$

$$\frac{e^x + x}{e^x - 1} > 1$$
 ب)حل المترجحة

$$\frac{e^x + x - (e^x - 1)}{e^x - 1} > 0$$
 و تكافئ $\frac{e^x + x}{e^x - 1} - 1 > 0$ تكافئ $\frac{e^x + x}{e^x - 1} > 1$ $\frac{x + 1}{e^x - 1} > 0$ ي أي $\frac{e^x + x - e^x + 1}{e^x - 1} > 0$ ي أي ي استعمال جدول:

$$x \le -1$$
 یکافئ $x + 1 \le 0$ و $x \ge -1$ یکافئ $x + 1 \ge 0$ در سنا سابقا (السؤال 2. أ)) إشارة $e^x - 1$

-00	-1	0 +∞
-	0 +	+
ų 	<u>-</u> -	+
+	0 –	+
		- 0 +

.3

$$\lim_{x \to -\infty} [f(x) + x] = \lim_{x \to -\infty} \left[\frac{e^x + x}{e^x - 1} + x \right] = \lim_{x \to -\infty} \left[\frac{e^x + x + x(e^x - 1)}{e^x - 1} \right]$$

http://www.onefd.edu.dz

جميع الحقوق محفوظة (C)

$$\lim_{x \to -\infty} \left[f(x) + x \right] = \lim_{x \to -\infty} \left[\frac{e^x + x + xe^x - x}{e^x - 1} \right] = \lim_{x \to -\infty} \left[\frac{e^x + xe^x}{e^x - 1} \right] \oint_{x \to -\infty} \lim_{x \to -\infty} \left[\frac{e^x + xe^x}{e^x - 1} \right] \oint_{x \to -\infty} \lim_{x \to -\infty} \left[f(x) + x \right] = 0$$

$$\lim_{x \to -\infty} xe^x = 0$$

$$\lim_{x \to -\infty} xe^x = 0$$

نستنتج أن المنحني الذي يمثل الدالة f يقبل عند ∞ مستقيما مقاربا مائلا V=-X معادلته V=-X

$$f(x) + x = \frac{e^x + xe^x}{e^x - 1} = \frac{(x+1)e^x}{e^x - 1}.4$$
((ب.2 السؤال (السؤال 2.ب)) هي إشارة

- عندما $[-\infty;-1]$ فوق $x \in (0)$ فوق $x \in (0)$
 - عندما $[0]_{(\mathcal{C})}$ نحت $[0]_{(\mathcal{C})}$ یکون $[0]_{(\mathcal{C})}$ تحت •

.4

 \mathbb{R} من اجل کل x من اجل x

$$f(x) = Ln(e^{x} + 1) = Ln\left(\frac{1}{e^{-x}} + 1\right) = Ln\left(\frac{1 + e^{-x}}{e^{-x}}\right)$$

$$f(x) = Ln(1 + e^{-x}) - Lne^{-x} = Ln(1 + e^{-x}) - (-x)Lne \text{ i. }$$

$$f(x) = Ln(1 + e^{-x}) + x = x + Ln(1 + e^{-x})$$

$$2$$

- $D_f =]-\infty; +\infty[$: f مجموعة تعريف
- $\lim_{x\to\infty} e^x = 0$ لأن $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} Ln(e^x + 1) = 0$ النهايات:

$$\begin{cases} \lim_{x \to +\infty} e^{-x} = \lim_{x \to +\infty} \frac{1}{e^{x}} = 0\\ \lim_{x \to +\infty} x = +\infty \end{cases} \forall \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[x + Ln(1 + e^{-x}) \right] = +\infty$$

- . $f'(x) = \frac{e^x}{e^x + 1}$: f'(x) قستقة المشتقة •
- f'(x) > 0 الإذارة $e^x > 0 : \mathbb{R}$ من f'(x) = 0 الإذارة f'(x) = 0
 - جدول التغيرات:

X	-∞	+∞
f'(x)	+	
f(x)		> +00
	0	

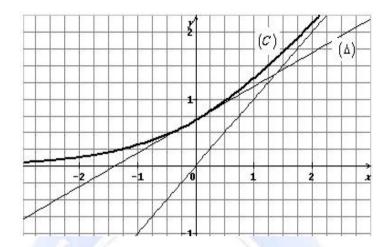
$$y = \frac{1}{2}x + Ln2$$
 أي $y = f'(0)(x-0) + f(0):(\Delta)$.

4. المستقيمات المقاربة:

- مستقیما مقار با معادلته $-\infty$ یقبل عند (C) یقبل این $\lim_{x \to -\infty} f(x) = 0$
 - ر محور الفواصل). y = 0
 - : لاحظ أن $f(x) = x + Ln(1 + e^{-x})$ إذن
- يقبل (C) يقبل $\lim_{x \to +\infty} \left[f(x) x \right] = \lim_{x \to +\infty} \left[Ln(1 + e^{-x}) \right] = 0$ •

y = x عند ∞ + مستقیما مقاربا مائلا معادلته

$$(\Delta)$$
 و (C) انشاء.



. 5

 $e^{Lna}=a$ انكر أن من أجل كل عدد حقيقى a موجب تماما لدينا (أ.1

$$f\left(Ln\frac{3}{4}\right) = 2e^{2Ln\frac{3}{4}} - 3e^{Ln\frac{3}{4}} + 1 = 2e^{Ln\left(\frac{3}{4}\right)^2} - 3e^{Ln\frac{3}{4}} + 1$$

$$f\left(Ln\frac{3}{4}\right) = 2\left(\frac{3}{4}\right)^2 - 3\left(\frac{3}{4}\right) + 1 = -\frac{1}{8}$$
پذن

$$(*)$$
..... $2e^{2x} - 3e^x + 1 = 0$ أي $f(x) = 0$ لنحل المعادلة

$$0.2t^2 - 3t + 1 = 0$$
نضع $0 + 1 = 0$ و المعادلة $0 + 1 = 0$ علما $0 + 1 = 0$

$$t = \frac{1}{2}$$
 $t = 1$ و نجد $t = 1$ و نجد $t = 1$ نحل المعادلة

$$x = 0$$
 ره الحام الحام الحام $e^x = e^0$ الحام الحام

$$x = Ln\frac{1}{2}$$
 of $e^x = e^{Ln\frac{1}{2}}$ of $e^x = \frac{1}{2}$ are $t = \frac{1}{2}$

$$\cdot O$$
 و $A\left(Ln\frac{1}{2};0\right)$:نستنتج أن $A\left(Ln\frac{1}{2};0\right)$ يقطع محور الفواصل في النقطتين

2. تغير إلى المقولة محفوظة

$$I =]-\infty;0$$
 معرفة على $f(1)$

$$\lim_{x \to -\infty} e^{2x} = 0$$
 و $\lim_{x \to -\infty} e^{x} = 0$ لأن $\lim_{x \to -\infty} f(x) = 1$ و $\lim_{x \to -\infty} f(x) = 1$ حساب الدالة المشتقة: $(4e^{x} - 3)$: $f'(x)$

$$e^{x} = \frac{3}{4}$$
 يُ أي $e^{x} = 0$ أي $e^{x} = \frac{3}{4}$ أي $e^{x} = 0$ معناه $e^{x} = 0$ أي $e^{x} = e^{x}$ أي $e^{x} = e^{x}$ أي $e^{x} = e^{x}$ أي $e^{x} = e^{x}$

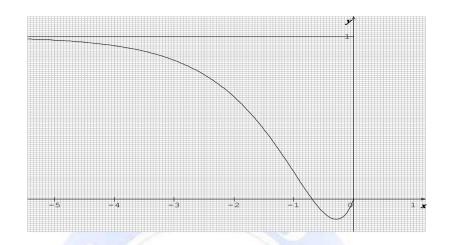
وأي
$$4e^x > 3$$
 أي $4e^x > 3$ أي $4e^x > 3$ أي $4e^x > 3$ معناه $4e^x > 3$

$$A \cdot X > Ln \frac{3}{4} c^{\frac{1}{4}} e^{x} > e^{Ln \frac{3}{4}} c^{\frac{1}{4}} e^{x} > \frac{3}{4}$$

$$X < Ln \frac{3}{4}$$
معناه $f'(x) > 0$

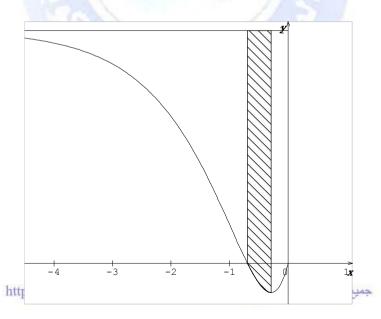
 $f'(x) = \begin{bmatrix} x & -\infty & Ln\frac{1}{2} & Ln\frac{3}{4} & 0 \\ -\infty & -\frac{1}{2} & -\frac{1}{8} & 0 \end{bmatrix}$

 $\lim_{x\to\infty} f(x) = 1.3$ الإذن $\lim_{x\to\infty} f(x) = 1.3$. y=1



هي $(a \neq 0)$ هي غلى $(a \neq 0)$ على الدوال الأصلية للدالة $(a \neq 0)$ على الدوال الأصلية للدالة $(a \neq 0)$ ثابت كيفي. الدوال من الشكل $(a \neq 0)$ $(a \neq 0)$ ثابت كيفي $(a \neq 0)$ الدوال من الشكل $(a \neq 0)$ $(a \neq 0)$ ثابت كيفي $(a \neq 0)$ الدوال من الشكل $(a \neq 0)$ $(a \neq 0)$ $(a \neq 0)$ ثابت كيفي $(a \neq 0)$ هي الدوال من الشكل $(a \neq 0)$ $(a \neq 0)$ $(a \neq 0)$ هي الدوال من الشكل $(a \neq 0)$ $(a \neq 0)$ $(a \neq 0)$ $(a \neq 0)$ $(a \neq 0)$ هي الدوال ا

ب)



$$\dot{S} = \left[x - F(x)\right]_{Ln\frac{1}{2}}^{Ln\frac{3}{4}} \quad \dot{S} = \int_{Ln\frac{1}{2}}^{Ln\frac{3}{4}} \left[1 - f(x)\right] dx$$

$$\dot{S} = \left[x - e^{2x} + 3e^{x} - x\right]_{Ln\frac{1}{2}}^{Ln\frac{3}{4}} = \left[-e^{2x} + 3e^{x}\right]_{Ln\frac{1}{2}}^{Ln\frac{3}{4}}$$

$$\dot{S} = \left[-e^{2x} + 3e^{x}\right]_{Ln\frac{1}{2}}^{Ln\frac{3}{4}} = \left(-e^{2Ln\frac{3}{4}} + 3e^{Ln\frac{3}{4}}\right) - \left(-e^{2Ln\frac{1}{2}} + 3e^{Ln\frac{1}{2}}\right)$$

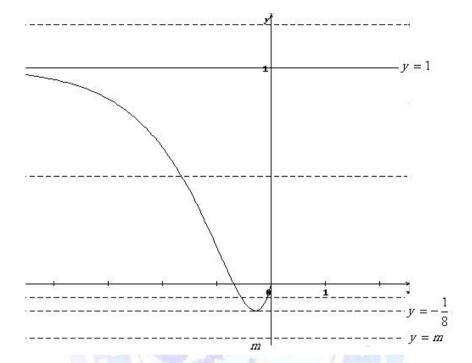
$$\begin{cases}
-e^{2Ln\frac{3}{4}} + 3e^{Ln\frac{3}{4}} = -e^{Ln\frac{9}{16}} + 3e^{Ln\frac{3}{4}} = -\frac{9}{16} + \frac{9}{4} = \frac{27}{16}$$

$$-e^{2Ln\frac{1}{2}} + 3e^{Ln\frac{1}{2}} = -e^{Ln\frac{1}{4}} + 3e^{Ln\frac{1}{2}} = -\frac{1}{4} + \frac{3}{2} = \frac{5}{4}$$

$$S = \frac{27}{16} - \frac{5}{4} = \frac{7}{16}u.A$$
 إذن

$$S = 7 \text{ cm}^2$$
 أي $S = \frac{7}{16} \times 16 \text{ cm}^2$ إذن $1u.A = 2 \times 8 \text{ cm}^2$

المعادلة f(x) = m تكافئ $2e^{2x} - 3e^x + 1 - m = 0$ ، إذن حلولها (في حالة وجودها) تكون فو اصل نقط تقاطع المنحني f(x) الذي يمثل الدالة y = m



نستتج عندئذ من الشكل السابق:

- إذا كان $\frac{1}{8} < m < -\frac{1}{8}$ المعادلة لا تقبل أي حل.
- . $Ln\frac{3}{4}$ هو إذا كان $m=-\frac{1}{8}$ المعادلة تقبل حلا وحيدا هو
 - إذا كان $0 \le m \le 1$: المعادلة تقبل حلين.
 - إذا كان 1 < m < 1: المعادلة تقبل وحيدا.
 - إذا كان $m \ge 1$: المعادلة لا تقبل أي حل.

الجزء A:

$$f(x) = \ln[900x \ e^{-0,1(x-2)}] :]0;12]$$
 من أجل كل x من أجل كل $f(x) = \ln(900x) + \ln e^{-0,1(x-2)}$ إذن

$$f(x) = \ln(900x) + \ln e^{-0.1(x-2)} = \ln 900 + \ln x - 0.1(x-2)$$

$$f'(x) = \frac{1}{x} - 0.1$$
 $\not\models f(x) = \ln 900 + \ln x - 0.1x + 0.2$

$$f'(x) = \frac{10-x}{10x}$$
 أي $f'(x) = \frac{1}{x} - \frac{1}{10}$

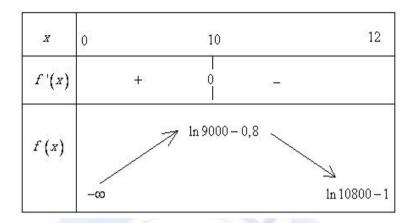
أ) معرفةعلى
$$[0;12]$$

$$\lim_{x \to 0} \ln x = -\infty \quad \text{if } \lim_{x \to 0} f(x) = -\infty \quad ($$
ب

$$f'(x) = \frac{10 - x}{10x}$$

$$X = 10$$
 معناه $f'(X) = 0$

$$. x > 10$$
 معناه $f'(x) < 0$ و $x < 10$ معناه $f'(x) > 0$



بإذن
$$r(x) > 0:]0;12]$$
 و من أجل كل x من $f'(x) = \frac{r'(x)}{r(x)} \cdot 4$. [0;12] للعبارتين: $f'(x)$ و $f'(x)$ نفس الإشارة على $f'(x)$. [0;12] . 5

X	0		10		12
f'(x)		+	 	7 4	
r'(X)		+	0	S 	
r(x)		\nearrow	9000e ^{-0,8}		
	0 /			1	0800 <i>e</i> -1

الجزء B:

$$R(x) = -9000 \left[(x+10) e^{-0,1x+0,2} \right] .1$$

$$R'(x) = -9000 \left[e^{-0,1x+0,2} + (x+10) (-0,1) e^{-0,1x+0,2} \right]$$
http://www.onefd.edu.dz

$$R'(x) = -9000 \ e^{-0.1x+0.2} \Big[\big(x+10 \big) \big(-0.1 \big) \Big]$$
 أي $R'(x) = -9000 \ e^{-0.1x+0.2} \Big[1-0.1x-1 \big]$ أي $R'(x) = -9000 \ (-0.1x \big) e^{-0.1x+0.2} \Big[1-0.1x-1 \big]$ يأ $R'(x) = -9000 \ (-0.1x \big) e^{-0.1x+0.2}$ يأ $R'(x) = 900xe^{-0.1(x-2)}$ يأ $R'(x) = 900xe^{-0.1(x-2)}$ يأ $R'(x) = 900xe^{-0.1(x-2)}$ يأ $R'(x) = r(x) :]0;12 \Big]$ من أجل كل R من $R'(x) = r(x) :]0;12 \Big[R(x) \Big]_0^{12} = \frac{1}{12} \Big[R(12) - R(0) \Big]$.2 $R(0) = -9000 \times 10 \times e^{0.2}$ يما أن $R(0) = -9000 \times 22 \times e^{-1} + 9000 \times 22 \times e^{-1}$ فإن $R(12) - R(0) = -9000 \times 22 \times e^{-1} + 9000 \times 10 \times e^{0.2}$ أي $R(12) - R(0) = 9000 \Big(-22e^{-1} + 10e^{0.2} \Big)$ أي $R(12) - R(0) = 18000 \Big(-11e^{-1} + 5e^{0.2} \Big) = 1500 \Big(-11e^{-1} + 5e^{0.2} \Big)$ نستنت $R(12) - R(0) = 1500 \Big(-11e^{-1} + 5e^{0.2} \Big)$

VII. تقويم ذاتى:

أ. اختيار من متعدد

1. كل سؤال يتضمن إجابة واحدة صحيحة حدّد هذه الإجابة

:العدد
$$e^{4+2x}$$
 یکتب علی الشکل

$$e^4 + e^{2x} \left(\longrightarrow \left(e^{x+2} \right)^2 \left(\smile \left(e^2 \right)^2 \times \frac{1}{e^{2x}} \right)^4 \right)$$

: فإن $f(x) = e^{-x} + \ln x$ فإن .b

$$\lim_{x \to 1} f(x) = 2e \left(\implies \lim_{x \to 0} f(x) = 1 \right) \left(\implies \lim_{x \to +\infty} f(x) = +\infty \right)$$

: المتر اجحة $e^{-3x+1} < e^{-2x+3}$ تقبل كمجموعة حلول .C

$$\left[e^{-2};+\infty\right]\left(\Rightarrow \left[-2;+\infty\right]\left(\downarrow\right)\right]-\infty;-2\left[\left(\uparrow\right)\right]$$

ا. اذا کان a < b = 0 فإنa < b

$$e^{\frac{a}{b}} < 1$$
 (\longrightarrow $e^{-a} < e^{-b}$ (\hookrightarrow $\frac{e^a}{e^b} < 1$ (

 $f(x) = 2e^{-x} + x + 5$: باتكن f دالة معرفة على \mathbb{R} بايد دالة معرفة على 2

a. في معلم معادلة المماس للمنحني الممثل للدالة f عند النقطة التي فاصلتها 0 معادلته:

المتراجحة المضاعفة $e^x < 8$ هي: b

$$]\ln 8; +\infty[$$
 (\rightarrow $]-\infty; 3 \ln 2[$ (\rightarrow $]0; 3 \ln 2[$ (\uparrow

دالة أصلية U للدالة μ على $\mathbb R$ هي :

http://www.onefd.edu.dz

$$U(x) = \frac{1}{2} e^{2x^2 + 6x + 1} + 3 \quad (\because \qquad U(x) = e^{2x^2 + 6x + 1} - 1 \quad (^{5})$$

$$U(x) = (x^2 + 3x) e^{2x^2 + 6x + 1} \quad (\because)$$

ب. صحيح أم خاطئ

- $f(x) = e^{-x} 1$: بعتبر الدالة f المعرفة على \mathbb{R} ب
- نرمز (\mathcal{C}) هو المنحني البياني الممثل للدالة f في معلم متعامد ومتجانس.نرمز \mathcal{C} ب على مشتقة الدالة f على \mathcal{C}

 \mathbb{R} على \mathbb{R} و نرمز ب \mathbb{R} إلى الدالة الأصلية للدالة \mathbb{R} على الذكر إن كانت العبار ات التالية صحيحة أم خاطئة

- $f(\ln 2) = -3$.a
- $\lim_{x \to +\infty} f(x) = -1 \quad .b$
 - $\int_{-1}^{0} f(x) dx > 1 \quad .C$
- $F(x) = 1 e^{-x} x$:من اجل کل عدد حقیقی x ،لدینا .d
 - $f(x) = xe^{-x}$... \mathbb{R} بيد الدالة f المعرفة على \mathbb{R} بيد إن كانت العبار ات التالية صحيحة أو خاطئة ، برر الأجوبة.
 - $f(x) \times f(-x) \le 0 : \mathbb{R}$ من أجل كل X من أجل عن .a
 - $f'(x) + f(x) = e^{-x}$: \mathbb{R} من أجل كل X من أجل
 - $f(x) \le e^{-1} : \mathbb{R}$ من أجل كل X من أجل .C
 - $\lim_{\substack{x \to -\infty \\ \text{can be decide}}} f'(x) = +\infty . d$

 $f(x) = -1 + e^{-x+2}$: بنكن الدالة f المعرفة على \mathbb{R}

أجب بصحيح أم خاطئ على الجمل الرياضية التالية ، مبرر ا إجابتك.

- \mathbb{R} . الدالة f متناقصة تماما على a
 - $\lim_{x \to +\infty} f(x) = -\infty .b$
- $]-\infty;2[$ و موجبة تماما على $]2,+\infty[$ و موجبة تماما على f
- d. منحني الدالة f يقيل المستقيم الذي معادلته y=-1 كمستقيم مقارب عند $-+\infty$
 - \mathbb{R} الدالة $x:\mapsto e^{f(x)}$ متناقصة تماما على .e

أ. أجوبة اختيار من متعدد

.1

- تمنح 5 نقط لكل جواب صحيح.
- تتقص 5 نقط بالنسبة لكل جواب خاطئ.
- لا تضاف و لا تتقص أي نقطة في حالة عدم الإجابة
- $\cdot (e^{x+2})^2 = e^{2(x+2)} = e^{2x+4}$ الإجابة ب) صحيحة لأن .a

$$\begin{cases} \lim_{x \to +\infty} e^{-x} = 0 \\ \lim_{x \to +\infty} \ln x = +\infty \end{cases}$$
 و لأن $\lim_{x \to +\infty} \left(e^{-x} + \ln x \right) = +\infty$.b

 $1< e^a < e^b$ أي $e^0 < e^a < e^b$ يكافئ 0< a < bن يكافئ أي طحيحة لأن $e^b > 0$ يكافئ $\frac{e^a}{e^b} < 1$ أي $e^b > 0$

.1

- تمنح 4 نقط لكل جواب صحيح.
- تتقص 4 نقط بالنسبة لكل جواب خاطئ.
- لا تضاف و لا تتقص أي نقطة في حالة عدم الإجابة

$$\begin{cases} f'(0) = -1 \\ f(0) = 7 \end{cases}$$
 و $y = f'(0)(x-0) + f(0)$ و $y = f'(0)(x-0) + f(0)$.a

 $x < \ln 8$ أي $e^x < e^{Ln8}$ أي $-1 < e^x < 8$ أي الم

$$x\mapsto U(x)=rac{1}{2}e^{2x^2+6x+1}+3$$
 الإجابة ب) صحيحة لأن مشتقة الدالة $X\mapsto U'(x)=rac{1}{2}(4x+6)e^{2x^2+6x+1}$ هي الدالة $X\mapsto U'(x)=rac{1}{2}(4x+6)e^{2x^2+6x+1}$ أي $X\mapsto U'(x)=u(x)$ أي $X\mapsto U'(x)=(2x+3)e^{2x^2+6x+1}$

ب. أجوبة صحيح أم خاطئ

.1

• تمنح 5 نقطة لكل جواب صحيح.

جميع الحقوق محفوظة (C

- تتقص 5 نقطة بالنسبة لكل جواب خاطئ.
- لا تضاف و لا تتقص أي نقطة في حالة عدم الإجابة

http://www.onefd.edu.dz

.
$$f(\ln 2) = e^{-\ln 2} - 1 = e^{\ln \frac{1}{2}} - 1 = \frac{1}{2} - 1 = -\frac{1}{2}$$
 گن .a

 $\lim_{x\to +\infty} e^{-x} = 0$ فصيح لأن. b

.2

- تمنح 5 نقطة لكل جواب صحيح.
- تتقص 5 نقطة بالنسبة لكل جو اب خاطئ.

لا تضاف و لا تنقص أي نقطة في حالة عدم الإجابة

$$f(x) \times f(-x) = xe^{-x} \times (-x)e^{x} = -x^{2}e^{-x+x}$$
 محیح لأن.

 $-X^2 \le 0$: \mathbb{R} من X کل کل کم و من أجل کل $f(x) \times f(-x) = -X^2 e^0 = -X^2$

ين
$$f'(x) = e^{-x} + x(-e^{-x}) = e^{-x} - xe^{-x}$$
 الإن .b

$$f'(x) + f(x) = e^{-x} - xe^{-x} + xe^{-x} = e^{-x}$$

$$f'(x) = (1-x)e^{-x}$$
 : صحيح لأن.

$$x \ge 1$$
 من أجل $f'(x) \le 0$ ، $x \le 1$ من أجل $f'(x) \ge 0$

X کل کل من أجل کل f التالي أن من أجل کل

 $f(x) \leq e^{-1}$: \mathbb{R} من

X	-00	1	+00
f'(x)	+	0	-
f(x)	,	A e-1	

$$\begin{cases} \lim_{x \to -\infty} (1-x) = +\infty \\ \lim_{x \to -\infty} e^{-x} = +\infty \end{cases}$$
 و
$$f'(x) = (1-x)e^{-x}$$
 .d

.3

- تمنح 3 نقطة لكل جواب صحيح.
- تتقص 3 نقطة بالنسبة لكل جواب خاطئ.

لا تضاف و لا تتقص أي نقطة في حالة عدم الإجابة

f'(x) < 0 : \mathbb{R} من أجل كل x من أجل كا x من أجل على .a.

 $\lim_{x \to +\infty} (-x+2) = -\infty$ لأن $\lim_{x \to +\infty} e^{-x+2} = 0$ لأن $\lim_{x \to +\infty} f(x) = 1$ فاطئ لأن: 1

 $f(x) > 1 : \mathbb{R}$ من x من أجل كل أن: من أجل كل كمن C

-00	+ 00
0.00	

.+ ∞ المستقيم الذي معادلته y=1 مقارب عند المستقيم الذي معادلته المستقيم الذي معادلته المستقيم الذي معادلته المستقيم المستقيم

 $x\mapsto f'(x)e^{f(x)}$ هي $x\mapsto e^{f(x)}$ هندالة الدالة .e

 $f'(x) < 0 : \mathbb{R}$ کل X کل

VIII. استعد للبكالوريا:

مسألة: (10 نقط)

 $f(x) = x + \frac{4}{1 + e^x}$:ب المعرفة على المعرفة عل

الحسب نهایتی الداله f عند ∞ و عند $\infty+$.

. f حيث f هي الدالة المشتقة للدالة f'(x) حيث f

. f'(x) و شكل جدول تغير ات الدالة f'(x)

3. نرمز بــ (\mathcal{C}) إلى التمثيل البياني للدالة f في المستوي المنسوب إلى معلم ($O; \vec{i}, \vec{j}$)

أ- بين أن المنحني (\mathcal{C}) يقبل المستقيم D الذي معادلته y=x كمقارب مائل عند x+4 ، و يقبل المستقيم x+4 الذي معادلته x+4 كمقارب مائل عند x+6 مائل عند

D' و D و الدرس وضعية المنحني (\mathcal{C}) بالنسبة إلى كل من

 α بين أن المنحني (\mathcal{C}) يقطع محور الفواصل في نقطة و احدة فاصلتها α حيث $\alpha \in [-4; -3]$ حيث

5. ارسم (٤).

x من أجل كل x من أجل كل a من أجل كل a من العددين الحدين الحقيقيين a

$$\frac{4}{1+e^x} = a + \frac{be^x}{1+e^x}$$

 \mathbb{R} على \mathbb{R} باستنتج دالة أصلية للدالة

و المستقيم D و المستقيم A للحيز المحدد بالمنحني C و المستقيم A المستقيمين اللذين معادلتاهما C و C C المستقيمين اللذين معادلتاهما C و C المستقيمين الحقوق معادلتاهما C و C المستقيمين الحقوق معادلتاهما C

سلّم التتقيط	الأسئلة	
1,5	النهايات	(1
1	f' حساب - أ	(2
0,5	ب- إشارة f	
0,5	fجدول تغير ات	
0,5	(D) المستقيم المقارب المائل -1	(3
0,5	(D')المستقيم المقارب المائل	
1	ب- وضعية ([©])	
1,5	تقاطع (º) و محور الفواصل	(4
1,5	إنشاء (٠٠)	(5
0,5	أ- عبين a و b	(6
0,5	ب- دالة أصلية لـ: f	
0,5	ج- حساب المساحة	

حل مفصل

.
$$f(x) = x + 4\frac{1}{1 + e^x}$$
 لدينا (أ.2

$$x \mapsto \frac{u'(x)}{u(x)}$$
 تذکر أن مشتقة الدالة $x \mapsto \frac{1}{u(x)}$ هي الدالة $f'(x) = \frac{\left(1 + e^x\right)^2 - 4e^x}{\left(1 + e^x\right)^2}$ ي $f'(x) = 1 - \frac{4e^x}{\left(1 + e^x\right)^2}$ ي $f'(x) = \frac{e^{2x} + 1 - 2e^x}{\left(1 + e^x\right)^2}$ ي $f'(x) = \frac{1 + e^{2x} + 2e^x - 4e^x}{\left(1 + e^x\right)^2}$ ي $f'(x) = \frac{\left(e^x - 1\right)^2}{\left(1 + e^x\right)^2}$ ي $f'(x) = \frac{\left(e^x - 1\right)^2}{\left(1 + e^x\right)^2}$ ي أي $f'(x) = \frac{\left(e^x - 1\right)^2}{\left(1 + e^x\right)^2}$

$$f'(x) \ge 0$$
 لدينا \mathbb{R} من X لدينا $f'(x) = \frac{\left(e^{x} - 1\right)^{2}}{\left(1 + e^{x}\right)^{2}}$ (ب

 \mathbb{R} إذن f متزايدة على \mathbb{R} .

$$f(0)=2$$
 و $f'(0)=0$

X	-ω		0		+ a
f'(x)		+	Ó	+	
f(x)			: -2 -		→ ⁺⁰

(1.3

$$y=x$$
 الذي معادلته D الذي المستقيم D الذي معادلته d

http://www.onefd.edu.dz

مستقيم مقارب مائل عند ∞+.

$$\lim_{x \to -\infty} \left[f(x) - (x+4) \right] = \lim_{x \to -\infty} \left(\frac{4}{1+e^x} - 4 \right) = \lim_{x \to -\infty} \left(\frac{-4e^x}{1+e^x} \right) = 0 \quad \bullet$$

$$y = x + 4 \text{ lim } e^x = 0 \text{ lift} e^x = 0$$

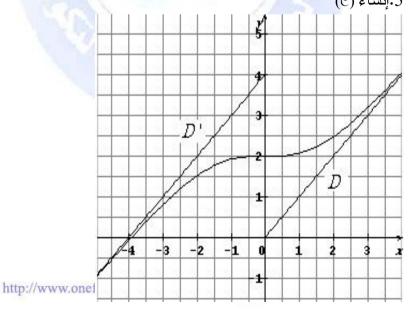
$$\text{Which is the problem of th$$

ب)

لدينا
$$\mathbb{R}$$
 من \mathbb{R} لدينا $f(x) - x = \frac{4}{1 + e^x}$ • $f(x) - x > 0$

لدينا
$$\mathbb{R}$$
 من X لدينا $f(x)-(x+4)=\frac{-4e^x}{1+e^x}$ • $f(x)-(x+4)<0$

(f مستمرة و متزايدة تماما على [-4,-3] انظر جدول تغيرات f .4 (f (-4) = -0,719... و f (-3) = 0,810...) f (-3) × f (-4) < 0 و .1.



$$a + \frac{be^{x}}{1 + e^{x}} = \frac{a(1 + e^{x}) + be^{x}}{1 + e^{x}} = \frac{(a + b)e^{x} + a}{1 + e^{x}} \quad (i.6)$$

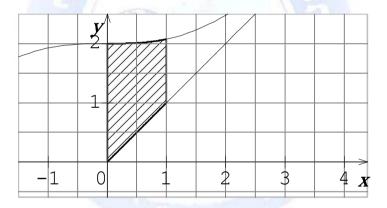
$$\frac{4}{1 + e^{x}} = \frac{(a + b)e^{x} + a}{1 + e^{x}} : \mathbb{R} \quad \text{in } x \quad \text{def} \quad (i.6)$$

$$\frac{4}{1 + e^{x}} = 4 - \frac{4e^{x}}{1 + e^{x}} \quad \text{if } \begin{cases} a = 4 \\ b = -4 \end{cases} \quad f(x) = x + 4 - 4 \frac{e^{x}}{1 + e^{x}} \quad \text{def} \quad (i.6)$$

$$\frac{4}{1 + e^{x}} = 4 - \frac{4e^{x}}{1 + e^{x}} \quad \text{if } \begin{cases} a = 4 \\ b = -4 \end{cases} \quad f(x) = x + 4 - 4 \frac{e^{x}}{1 + e^{x}} \quad \text{def} \quad (i.6)$$

$$\mathbb{R}$$
 . \mathbb{R} دالة أصلية للدالة $F(x) = \frac{x^2}{2} + 4x - 4\ln(1+e^x)$

ج) حساب المساحة A



$$A = \int_0^1 \left[f(x) - x \right] dx = \left[F(x) - \frac{x^2}{2} \right]_0^1$$

$$A = \left[4x - 4\ln(1 + e^x) \right]_0^1 = \left[4 - 4\ln(1 + e) \right] - \left(-4\ln 2 \right)$$

$$A = 4 \left[1 - \ln(1 + e) + \ln 2 \right] = 4 \left[\ln e - \ln(1 + e) + \ln 2 \right]$$

$$A = 4 \left[\ln e + \ln 2 - \ln(1 + e) \right] = 4 \left[\ln 2e - \ln(1 + e) \right] = 4 \ln \left(\frac{2e}{1 + e} \right)$$

$$http://www.onefd.edu.dz$$